Show commands for:
SageMath
sage: E = EllipticCurve("u1")
sage: E.isogeny_class()
Elliptic curves in class 457776.u
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | Torsion structure | Modular degree | Optimality |
---|---|---|---|---|---|
457776.u1 | 457776u1 | [0, 0, 0, -37621731, 88117062370] | [2] | 61931520 | \(\Gamma_0(N)\)-optimal |
457776.u2 | 457776u2 | [0, 0, 0, -10987491, 210458780386] | [2] | 123863040 |
Rank
sage: E.rank()
The elliptic curves in class 457776.u have rank \(0\).
Complex multiplication
The elliptic curves in class 457776.u do not have complex multiplication.Modular form 457776.2.a.u
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.