Properties

Label 45662r
Number of curves $2$
Conductor $45662$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("r1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 45662r have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 - T\)
\(17\)\(1\)
\(79\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 - T + 3 T^{2}\) 1.3.ab
\(5\) \( 1 + T + 5 T^{2}\) 1.5.b
\(7\) \( 1 + 3 T + 7 T^{2}\) 1.7.d
\(11\) \( 1 + 2 T + 11 T^{2}\) 1.11.c
\(13\) \( 1 + T + 13 T^{2}\) 1.13.b
\(19\) \( 1 + 19 T^{2}\) 1.19.a
\(23\) \( 1 - 6 T + 23 T^{2}\) 1.23.ag
\(29\) \( 1 - 10 T + 29 T^{2}\) 1.29.ak
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 45662r do not have complex multiplication.

Modular form 45662.2.a.r

Copy content sage:E.q_eigenform(10)
 
\(q + q^{2} - 2 q^{3} + q^{4} + 2 q^{5} - 2 q^{6} + q^{8} + q^{9} + 2 q^{10} + 4 q^{11} - 2 q^{12} + 2 q^{13} - 4 q^{15} + q^{16} + q^{18} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 45662r

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
45662.m2 45662r1 \([1, 0, 0, 283, 3805]\) \(103823/316\) \(-7627471804\) \([2]\) \(30720\) \(0.57957\) \(\Gamma_0(N)\)-optimal
45662.m1 45662r2 \([1, 0, 0, -2607, 43687]\) \(81182737/12482\) \(301285136258\) \([2]\) \(61440\) \(0.92614\)