Properties

Label 4560.u
Number of curves $2$
Conductor $4560$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
sage: E = EllipticCurve("u1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 4560.u

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
4560.u1 4560v2 \([0, 1, 0, -3476, -72360]\) \(18148802937424/1947796875\) \(498636000000\) \([2]\) \(4608\) \(0.97878\)  
4560.u2 4560v1 \([0, 1, 0, -3381, -76806]\) \(267219216891904/3655125\) \(58482000\) \([2]\) \(2304\) \(0.63221\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 4560.u have rank \(1\).

Complex multiplication

The elliptic curves in class 4560.u do not have complex multiplication.

Modular form 4560.2.a.u

sage: E.q_eigenform(10)
 
\(q + q^{3} - q^{5} + 2 q^{7} + q^{9} - 4 q^{11} - q^{15} - 2 q^{17} - q^{19} + O(q^{20})\)  Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.