Properties

Label 4560.i
Number of curves $2$
Conductor $4560$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
sage: E = EllipticCurve("i1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 4560.i

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
4560.i1 4560o2 \([0, -1, 0, -76, 76]\) \(192143824/106875\) \(27360000\) \([2]\) \(1536\) \(0.11742\)  
4560.i2 4560o1 \([0, -1, 0, 19, 0]\) \(44957696/27075\) \(-433200\) \([2]\) \(768\) \(-0.22916\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 4560.i have rank \(0\).

Complex multiplication

The elliptic curves in class 4560.i do not have complex multiplication.

Modular form 4560.2.a.i

sage: E.q_eigenform(10)
 
\(q - q^{3} - q^{5} + 4 q^{7} + q^{9} - 2 q^{11} + 6 q^{13} + q^{15} - 2 q^{17} - q^{19} + O(q^{20})\)  Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.