Properties

Label 4560.h
Number of curves $2$
Conductor $4560$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
sage: E = EllipticCurve("h1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 4560.h

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
4560.h1 4560k2 \([0, -1, 0, -1216, 1216]\) \(48587168449/28048275\) \(114885734400\) \([2]\) \(5120\) \(0.81179\)  
4560.h2 4560k1 \([0, -1, 0, 304, 0]\) \(756058031/438615\) \(-1796567040\) \([2]\) \(2560\) \(0.46522\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 4560.h have rank \(0\).

Complex multiplication

The elliptic curves in class 4560.h do not have complex multiplication.

Modular form 4560.2.a.h

sage: E.q_eigenform(10)
 
\(q - q^{3} - q^{5} + 2q^{7} + q^{9} + 6q^{11} + q^{15} - 6q^{17} - q^{19} + O(q^{20})\)  Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.