Properties

Label 4560.d
Number of curves $2$
Conductor $4560$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
sage: E = EllipticCurve("d1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 4560.d

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
4560.d1 4560m2 \([0, -1, 0, -373216, 87882880]\) \(1403607530712116449/39475350\) \(161691033600\) \([2]\) \(26880\) \(1.6612\)  
4560.d2 4560m1 \([0, -1, 0, -23296, 1382656]\) \(-341370886042369/1817528220\) \(-7444595589120\) \([2]\) \(13440\) \(1.3146\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 4560.d have rank \(0\).

Complex multiplication

The elliptic curves in class 4560.d do not have complex multiplication.

Modular form 4560.2.a.d

sage: E.q_eigenform(10)
 
\(q - q^{3} - q^{5} - 2 q^{7} + q^{9} + 4 q^{11} + 6 q^{13} + q^{15} + 4 q^{17} - q^{19} + O(q^{20})\)  Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.