Minimal Weierstrass equation
Minimal equation
Minimal equation
Simplified equation
\(y^2=x^3+x^2-95x-732\)
|
(homogenize, simplify) |
\(y^2z=x^3+x^2z-95xz^2-732z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-7722x-510489\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z\)
Infinite order Mordell-Weil generator and height
$P$ | = |
\(\left(\frac{849}{64}, \frac{11655}{512}\right)\)
|
$\hat{h}(P)$ | ≈ | $6.3623176431865679268125726942$ |
Torsion generators
\( \left(12, 0\right) \)
Integral points
\( \left(12, 0\right) \)
Invariants
sage: E.conductor().factor()
gp: ellglobalred(E)[1]
magma: Conductor(E);
|
|||
Conductor: | \( 4560 \) | = | $2^{4} \cdot 3 \cdot 5 \cdot 19$ |
sage: E.discriminant().factor()
gp: E.disc
magma: Discriminant(E);
|
|||
Discriminant: | $-156385200 $ | = | $-1 \cdot 2^{4} \cdot 3 \cdot 5^{2} \cdot 19^{4} $ |
sage: E.j_invariant().factor()
gp: E.j
magma: jInvariant(E);
|
|||
j-invariant: | \( -\frac{5988775936}{9774075} \) | = | $-1 \cdot 2^{11} \cdot 3^{-1} \cdot 5^{-2} \cdot 11^{3} \cdot 13^{3} \cdot 19^{-4}$ |
Endomorphism ring: | $\Z$ | ||
Geometric endomorphism ring: | \(\Z\) | (no potential complex multiplication) | |
Sato-Tate group: | $\mathrm{SU}(2)$ | ||
Faltings height: | $0.26330408722014281731037379356\dots$ | ||
Stable Faltings height: | $0.032255027033494380837963086407\dots$ |
BSD invariants
sage: E.rank()
magma: Rank(E);
| |||
Analytic rank: | $1$ | ||
sage: E.regulator()
magma: Regulator(E);
| |||
Regulator: | $6.3623176431865679268125726942\dots$ | ||
sage: E.period_lattice().omega()
gp: E.omega[1]
magma: RealPeriod(E);
| |||
Real period: | $0.72311931828675310462836559021\dots$ | ||
sage: E.tamagawa_numbers()
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
magma: TamagawaNumbers(E);
| |||
Tamagawa product: | $ 4 $ = $ 1\cdot1\cdot2\cdot2 $ | ||
sage: E.torsion_order()
gp: elltors(E)[1]
magma: Order(TorsionSubgroup(E));
| |||
Torsion order: | $2$ | ||
sage: E.sha().an_numerical()
magma: MordellWeilShaInformation(E);
| |||
Analytic order of Ш: | $1$ (exact) | ||
sage: r = E.rank();
gp: ar = ellanalyticrank(E);
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
| |||
Special value: | $ L'(E,1) $ ≈ $ 4.6007147968648526828129557655 $ |
Modular invariants
For more coefficients, see the Downloads section to the right.
sage: E.modular_degree()
magma: ModularDegree(E);
|
|||
Modular degree: | 1024 | ||
$ \Gamma_0(N) $-optimal: | yes | ||
Manin constant: | 1 |
Local data
This elliptic curve is not semistable. There are 4 primes of bad reduction:
prime | Tamagawa number | Kodaira symbol | Reduction type | Root number | ord($N$) | ord($\Delta$) | ord$(j)_{-}$ |
---|---|---|---|---|---|---|---|
$2$ | $1$ | $II$ | Additive | 1 | 4 | 4 | 0 |
$3$ | $1$ | $I_{1}$ | Split multiplicative | -1 | 1 | 1 | 1 |
$5$ | $2$ | $I_{2}$ | Split multiplicative | -1 | 1 | 2 | 2 |
$19$ | $2$ | $I_{4}$ | Non-split multiplicative | 1 | 1 | 4 | 4 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2B | 4.12.0.8 |
$p$-adic regulators
Note: $p$-adic regulator data only exists for primes $p\ge 5$ of good ordinary reduction.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | add | split | split | ss | ss | ord | ord | nonsplit | ord | ord | ss | ord | ord | ord | ord |
$\lambda$-invariant(s) | - | 2 | 2 | 1,3 | 1,1 | 1 | 1 | 1 | 1 | 1 | 1,1 | 1 | 1 | 1 | 1 |
$\mu$-invariant(s) | - | 0 | 0 | 0,0 | 0,0 | 0 | 0 | 0 | 0 | 0 | 0,0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2 and 4.
Its isogeny class 4560.bb
consists of 4 curves linked by isogenies of
degrees dividing 4.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{-3}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | Not in database |
$2$ | \(\Q(\sqrt{3}) \) | \(\Z/4\Z\) | Not in database |
$2$ | \(\Q(\sqrt{-1}) \) | \(\Z/4\Z\) | Not in database |
$4$ | \(\Q(\zeta_{12})\) | \(\Z/2\Z \oplus \Z/4\Z\) | Not in database |
$4$ | 4.0.10800.2 | \(\Z/2\Z \oplus \Z/4\Z\) | Not in database |
$8$ | 8.0.1866240000.14 | \(\Z/4\Z \oplus \Z/4\Z\) | Not in database |
$8$ | 8.4.15200641440000.18 | \(\Z/8\Z\) | Not in database |
$8$ | 8.0.4804153344.1 | \(\Z/8\Z\) | Not in database |
$8$ | Deg 8 | \(\Z/6\Z\) | Not in database |
$16$ | Deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | Not in database |
$16$ | 16.0.1869471037565976969216.1 | \(\Z/2\Z \oplus \Z/8\Z\) | Not in database |
$16$ | Deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | Not in database |
$16$ | Deg 16 | \(\Z/2\Z \oplus \Z/6\Z\) | Not in database |
$16$ | Deg 16 | \(\Z/12\Z\) | Not in database |
$16$ | Deg 16 | \(\Z/12\Z\) | Not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.