Properties

Label 450840r
Number of curves $1$
Conductor $450840$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
sage: E = EllipticCurve("r1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 450840r

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
450840.r1 450840r1 \([0, -1, 0, -27840, -52893540]\) \(-1156/585\) \(-1207660986124968960\) \([]\) \(6266880\) \(2.1487\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 450840r1 has rank \(0\).

Complex multiplication

The elliptic curves in class 450840r do not have complex multiplication.

Modular form 450840.2.a.r

sage: E.q_eigenform(10)
 
\(q - q^{3} + q^{5} - 2q^{7} + q^{9} - 5q^{11} + q^{13} - q^{15} - q^{19} + O(q^{20})\)  Toggle raw display