Properties

Label 450840d
Number of curves $1$
Conductor $450840$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
sage: E = EllipticCurve("d1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 450840d

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
450840.d1 450840d1 \([0, -1, 0, 994064, 74608636]\) \(15208100924/9140625\) \(-65293089647760000000\) \([]\) \(10967040\) \(2.4914\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 450840d1 has rank \(0\).

Complex multiplication

The elliptic curves in class 450840d do not have complex multiplication.

Modular form 450840.2.a.d

sage: E.q_eigenform(10)
 
\(q - q^{3} - q^{5} - 2q^{7} + q^{9} + q^{11} + q^{13} + q^{15} - 5q^{19} + O(q^{20})\)  Toggle raw display