# Properties

 Label 450840.v1 Conductor $450840$ Discriminant $-4.088\times 10^{22}$ j-invariant $$-\frac{430468214044178}{827032912875}$$ CM no Rank $0$ Torsion structure trivial

# Related objects

Show commands: Magma / Pari/GP / SageMath

## Minimal Weierstrass equation

sage: E = EllipticCurve([0, -1, 0, -5773160, -11095074900])

gp: E = ellinit([0, -1, 0, -5773160, -11095074900])

magma: E := EllipticCurve([0, -1, 0, -5773160, -11095074900]);

$$y^2=x^3-x^2-5773160x-11095074900$$

trivial

## Integral points

sage: E.integral_points()

magma: IntegralPoints(E);

None

## Invariants

 sage: E.conductor().factor()  gp: ellglobalred(E)[1]  magma: Conductor(E); Conductor: $$450840$$ = $2^{3} \cdot 3 \cdot 5 \cdot 13 \cdot 17^{2}$ sage: E.discriminant().factor()  gp: E.disc  magma: Discriminant(E); Discriminant: $-40883331071572584192000$ = $-1 \cdot 2^{11} \cdot 3^{11} \cdot 5^{3} \cdot 13^{3} \cdot 17^{7}$ sage: E.j_invariant().factor()  gp: E.j  magma: jInvariant(E); j-invariant: $$-\frac{430468214044178}{827032912875}$$ = $-1 \cdot 2 \cdot 3^{-11} \cdot 5^{-3} \cdot 13^{-3} \cdot 17^{-1} \cdot 59929^{3}$ Endomorphism ring: $\Z$ Geometric endomorphism ring: $$\Z$$ (no potential complex multiplication) Sato-Tate group: $\mathrm{SU}(2)$ Faltings height: $3.0284493222594803758338037397\dots$ Stable Faltings height: $0.97645773471808913540990698609\dots$

## BSD invariants

 sage: E.rank()  magma: Rank(E); Analytic rank: $0$ sage: E.regulator()  magma: Regulator(E); Regulator: $1$ sage: E.period_lattice().omega()  gp: E.omega[1]  magma: RealPeriod(E); Real period: $0.045827002606297155255810005311\dots$ sage: E.tamagawa_numbers()  gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]  magma: TamagawaNumbers(E); Tamagawa product: $12$  = $1\cdot1\cdot3\cdot1\cdot2^{2}$ sage: E.torsion_order()  gp: elltors(E)[1]  magma: Order(TorsionSubgroup(E)); Torsion order: $1$ sage: E.sha().an_numerical()  magma: MordellWeilShaInformation(E); Analytic order of Ш: $1$ (exact) sage: r = E.rank(); sage: E.lseries().dokchitser().derivative(1,r)/r.factorial()  gp: ar = ellanalyticrank(E); gp: ar[2]/factorial(ar[1])  magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12); Special value: $L(E,1)$ ≈ $0.54992403127556586306972006373446492224$

## Modular invariants

Modular form 450840.2.a.v

sage: E.q_eigenform(20)

gp: xy = elltaniyama(E);

gp: x*deriv(xy[1])/(2*xy[2]+E.a1*xy[1]+E.a3)

magma: ModularForm(E);

$$q - q^{3} + q^{5} - 2q^{7} + q^{9} + 5q^{11} - q^{13} - q^{15} - 7q^{19} + O(q^{20})$$

 sage: E.modular_degree()  magma: ModularDegree(E); Modular degree: 43794432 $\Gamma_0(N)$-optimal: yes Manin constant: 1

## Local data

This elliptic curve is not semistable. There are 5 primes of bad reduction:

sage: E.local_data()

gp: ellglobalred(E)[5]

magma: [LocalInformation(E,p) : p in BadPrimes(E)];

prime Tamagawa number Kodaira symbol Reduction type Root number ord($N$) ord($\Delta$) ord$(j)_{-}$
$2$ $1$ $II^{*}$ Additive 1 3 11 0
$3$ $1$ $I_{11}$ Non-split multiplicative 1 1 11 11
$5$ $3$ $I_{3}$ Split multiplicative -1 1 3 3
$13$ $1$ $I_{3}$ Non-split multiplicative 1 1 3 3
$17$ $4$ $I_1^{*}$ Additive 1 2 7 1

## Galois representations

sage: rho = E.galois_representation();

sage: [rho.image_type(p) for p in rho.non_surjective()]

magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];

The $\ell$-adic Galois representation has maximal image $\GL(2,\Z_\ell)$ for all primes $\ell$.

## $p$-adic regulators

sage: [E.padic_regulator(p) for p in primes(5,20) if E.conductor().valuation(p)<2]

All $p$-adic regulators are identically $1$ since the rank is $0$.

No Iwasawa invariant data is available for this curve.

## Isogenies

This curve has no rational isogenies. Its isogeny class 450840.v consists of this curve only.