# Properties

 Label 450840.s2 Conductor $450840$ Discriminant $-2.683\times 10^{26}$ j-invariant $$-\frac{82847542748407455193088}{141410419921875}$$ CM no Rank $0$ Torsion structure $$\Z/{2}\Z$$

# Related objects

Show commands: Magma / Pari/GP / SageMath

## Minimal Weierstrass equation

sage: E = EllipticCurve([0, -1, 0, -11243600295, -458884411110600])

gp: E = ellinit([0, -1, 0, -11243600295, -458884411110600])

magma: E := EllipticCurve([0, -1, 0, -11243600295, -458884411110600]);

$$y^2=x^3-x^2-11243600295x-458884411110600$$

## Mordell-Weil group structure

$\Z/{2}\Z$

## Torsion generators

sage: E.torsion_subgroup().gens()

gp: elltors(E)

magma: TorsionSubgroup(E);

$$\left(122440, 0\right)$$

## Integral points

sage: E.integral_points()

magma: IntegralPoints(E);

$$\left(122440, 0\right)$$

## Invariants

 sage: E.conductor().factor()  gp: ellglobalred(E)[1]  magma: Conductor(E); Conductor: $$450840$$ = $2^{3} \cdot 3 \cdot 5 \cdot 13 \cdot 17^{2}$ sage: E.discriminant().factor()  gp: E.disc  magma: Discriminant(E); Discriminant: $-268312982609347534218750000$ = $-1 \cdot 2^{4} \cdot 3 \cdot 5^{10} \cdot 13^{6} \cdot 17^{9}$ sage: E.j_invariant().factor()  gp: E.j  magma: jInvariant(E); j-invariant: $$-\frac{82847542748407455193088}{141410419921875}$$ = $-1 \cdot 2^{11} \cdot 3^{-1} \cdot 5^{-10} \cdot 13^{-6} \cdot 149^{3} \cdot 23039^{3}$ Endomorphism ring: $\Z$ Geometric endomorphism ring: $$\Z$$ (no potential complex multiplication) Sato-Tate group: $\mathrm{SU}(2)$ Faltings height: $4.3320689447845602733025097953\dots$ Stable Faltings height: $1.9761098765557497766429481247\dots$

## BSD invariants

 sage: E.rank()  magma: Rank(E); Analytic rank: $0$ sage: E.regulator()  magma: Regulator(E); Regulator: $1$ sage: E.period_lattice().omega()  gp: E.omega[1]  magma: RealPeriod(E); Real period: $0.0073306614822982779306133575093\dots$ sage: E.tamagawa_numbers()  gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]  magma: TamagawaNumbers(E); Tamagawa product: $240$  = $2\cdot1\cdot( 2 \cdot 5 )\cdot( 2 \cdot 3 )\cdot2$ sage: E.torsion_order()  gp: elltors(E)[1]  magma: Order(TorsionSubgroup(E)); Torsion order: $2$ sage: E.sha().an_numerical()  magma: MordellWeilShaInformation(E); Analytic order of Ш: $4$ = $2^2$ (exact) sage: r = E.rank(); sage: E.lseries().dokchitser().derivative(1,r)/r.factorial()  gp: ar = ellanalyticrank(E); gp: ar[2]/factorial(ar[1])  magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12); Special value: $L(E,1)$ ≈ $1.7593587557515867033472058022360930114$

## Modular invariants

Modular form 450840.2.a.s

sage: E.q_eigenform(20)

gp: xy = elltaniyama(E);

gp: x*deriv(xy[1])/(2*xy[2]+E.a1*xy[1]+E.a3)

magma: ModularForm(E);

$$q - q^{3} + q^{5} - 2q^{7} + q^{9} - 4q^{11} + q^{13} - q^{15} + O(q^{20})$$

 sage: E.modular_degree()  magma: ModularDegree(E); Modular degree: 513884160 $\Gamma_0(N)$-optimal: not computed* (one of 2 curves in this isogeny class which might be optimal) Manin constant: 1 (conditional*)
* The optimal curve in each isogeny class has not been determined in all cases for conductors over 400000. The Manin constant is correct provided that this curve is optimal.

## Local data

This elliptic curve is not semistable. There are 5 primes of bad reduction:

sage: E.local_data()

gp: ellglobalred(E)[5]

magma: [LocalInformation(E,p) : p in BadPrimes(E)];

prime Tamagawa number Kodaira symbol Reduction type Root number ord($N$) ord($\Delta$) ord$(j)_{-}$
$2$ $2$ $III$ Additive -1 3 4 0
$3$ $1$ $I_{1}$ Non-split multiplicative 1 1 1 1
$5$ $10$ $I_{10}$ Split multiplicative -1 1 10 10
$13$ $6$ $I_{6}$ Split multiplicative -1 1 6 6
$17$ $2$ $III^{*}$ Additive 1 2 9 0

## Galois representations

sage: rho = E.galois_representation();

sage: [rho.image_type(p) for p in rho.non_surjective()]

magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];

The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.

prime $\ell$ mod-$\ell$ image $\ell$-adic image
$2$ 2B 2.3.0.1

## $p$-adic regulators

sage: [E.padic_regulator(p) for p in primes(5,20) if E.conductor().valuation(p)<2]

All $p$-adic regulators are identically $1$ since the rank is $0$.

No Iwasawa invariant data is available for this curve.

## Isogenies

This curve has non-trivial cyclic isogenies of degree $d$ for $d=$ 2.
Its isogeny class 450840.s consists of 2 curves linked by isogenies of degree 2.