Properties

Label 450840.n
Number of curves $1$
Conductor $450840$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
sage: E = EllipticCurve("n1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 450840.n

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
450840.n1 450840n1 \([0, -1, 0, -30441, 3145005]\) \(-504871936/394875\) \(-2440018575072000\) \([]\) \(2480640\) \(1.6512\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 450840.n1 has rank \(1\).

Complex multiplication

The elliptic curves in class 450840.n do not have complex multiplication.

Modular form 450840.2.a.n

sage: E.q_eigenform(10)
 
\(q - q^{3} - q^{5} + 3q^{7} + q^{9} + 3q^{11} - q^{13} + q^{15} - 6q^{19} + O(q^{20})\)  Toggle raw display