# Properties

 Label 450840.g6 Conductor $450840$ Discriminant $-8.742\times 10^{23}$ j-invariant $$\frac{27980756504588158}{17683545112935}$$ CM no Rank $1$ Torsion structure $$\Z/{2}\Z$$

# Related objects

Show commands: Magma / Pari/GP / SageMath

## Minimal Weierstrass equation

sage: E = EllipticCurve([0, -1, 0, 23212384, 13054135020])

gp: E = ellinit([0, -1, 0, 23212384, 13054135020])

magma: E := EllipticCurve([0, -1, 0, 23212384, 13054135020]);

$$y^2=x^3-x^2+23212384x+13054135020$$

## Mordell-Weil group structure

$\Z\times \Z/{2}\Z$

### Infinite order Mordell-Weil generator and height

sage: E.gens()

magma: Generators(E);

 $P$ = $$\left(34789, 6551612\right)$$ $\hat{h}(P)$ ≈ $10.525629655606868700140226812$

## Torsion generators

sage: E.torsion_subgroup().gens()

gp: elltors(E)

magma: TorsionSubgroup(E);

$$\left(-555, 0\right)$$

## Integral points

sage: E.integral_points()

magma: IntegralPoints(E);

$$\left(-555, 0\right)$$, $$(34789,\pm 6551612)$$

## Invariants

 sage: E.conductor().factor()  gp: ellglobalred(E)[1]  magma: Conductor(E); Conductor: $$450840$$ = $2^{3} \cdot 3 \cdot 5 \cdot 13 \cdot 17^{2}$ sage: E.discriminant().factor()  gp: E.disc  magma: Discriminant(E); Discriminant: $-874163794591910615070720$ = $-1 \cdot 2^{11} \cdot 3 \cdot 5 \cdot 13^{2} \cdot 17^{14}$ sage: E.j_invariant().factor()  gp: E.j  magma: jInvariant(E); j-invariant: $$\frac{27980756504588158}{17683545112935}$$ = $2 \cdot 3^{-1} \cdot 5^{-1} \cdot 13^{-2} \cdot 17^{-8} \cdot 240959^{3}$ Endomorphism ring: $\Z$ Geometric endomorphism ring: $$\Z$$ (no potential complex multiplication) Sato-Tate group: $\mathrm{SU}(2)$ Faltings height: $3.2829809194962946232181642955\dots$ Stable Faltings height: $1.2309893319549033827942675419\dots$

## BSD invariants

 sage: E.rank()  magma: Rank(E); Analytic rank: $1$ sage: E.regulator()  magma: Regulator(E); Regulator: $10.525629655606868700140226812\dots$ sage: E.period_lattice().omega()  gp: E.omega[1]  magma: RealPeriod(E); Real period: $0.055168283295262817873562795910\dots$ sage: E.tamagawa_numbers()  gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]  magma: TamagawaNumbers(E); Tamagawa product: $8$  = $1\cdot1\cdot1\cdot2\cdot2^{2}$ sage: E.torsion_order()  gp: elltors(E)[1]  magma: Order(TorsionSubgroup(E)); Torsion order: $2$ sage: E.sha().an_numerical()  magma: MordellWeilShaInformation(E); Analytic order of Ш: $4$ = $2^2$ (exact) sage: r = E.rank(); sage: E.lseries().dokchitser().derivative(1,r)/r.factorial()  gp: ar = ellanalyticrank(E); gp: ar[2]/factorial(ar[1])  magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12); Special value: $L'(E,1)$ ≈ $4.6454473496123147296096043206164982890$

## Modular invariants

Modular form 450840.2.a.g

sage: E.q_eigenform(20)

gp: xy = elltaniyama(E);

gp: x*deriv(xy[1])/(2*xy[2]+E.a1*xy[1]+E.a3)

magma: ModularForm(E);

$$q - q^{3} - q^{5} + q^{9} - 4q^{11} + q^{13} + q^{15} - 4q^{19} + O(q^{20})$$

 sage: E.modular_degree()  magma: ModularDegree(E); Modular degree: 51904512 $\Gamma_0(N)$-optimal: no Manin constant: 1

## Local data

This elliptic curve is not semistable. There are 5 primes of bad reduction:

sage: E.local_data()

gp: ellglobalred(E)[5]

magma: [LocalInformation(E,p) : p in BadPrimes(E)];

prime Tamagawa number Kodaira symbol Reduction type Root number ord($N$) ord($\Delta$) ord$(j)_{-}$
$2$ $1$ $II^{*}$ Additive -1 3 11 0
$3$ $1$ $I_{1}$ Non-split multiplicative 1 1 1 1
$5$ $1$ $I_{1}$ Non-split multiplicative 1 1 1 1
$13$ $2$ $I_{2}$ Split multiplicative -1 1 2 2
$17$ $4$ $I_8^{*}$ Additive 1 2 14 8

## Galois representations

sage: rho = E.galois_representation();

sage: [rho.image_type(p) for p in rho.non_surjective()]

magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];

The $\ell$-adic Galois representation has maximal image $\GL(2,\Z_\ell)$ for all primes $\ell$ except those listed in the table below.

prime $\ell$ mod-$\ell$ image $\ell$-adic image
$2$ 2B 16.24.0.8

## $p$-adic regulators

sage: [E.padic_regulator(p) for p in primes(5,20) if E.conductor().valuation(p)<2]

$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.

No Iwasawa invariant data is available for this curve.

## Isogenies

This curve has non-trivial cyclic isogenies of degree $d$ for $d=$ 2, 4 and 8.
Its isogeny class 450840.g consists of 4 curves linked by isogenies of degrees dividing 8.