# Properties

 Label 448c1 Conductor $448$ Discriminant $-7340032$ j-invariant $$-\frac{15625}{28}$$ CM no Rank $0$ Torsion structure $$\Z/{2}\Z$$

# Related objects

Show commands: Magma / Pari/GP / SageMath

## Minimal Weierstrass equation

sage: E = EllipticCurve([0, -1, 0, -33, 161])

gp: E = ellinit([0, -1, 0, -33, 161])

magma: E := EllipticCurve([0, -1, 0, -33, 161]);

$$y^2=x^3-x^2-33x+161$$

## Mordell-Weil group structure

$\Z/{2}\Z$

## Torsion generators

sage: E.torsion_subgroup().gens()

gp: elltors(E)

magma: TorsionSubgroup(E);

$$\left(-7, 0\right)$$

## Integral points

sage: E.integral_points()

magma: IntegralPoints(E);

$$\left(-7, 0\right)$$

## Invariants

 sage: E.conductor().factor()  gp: ellglobalred(E)[1]  magma: Conductor(E); Conductor: $$448$$ = $2^{6} \cdot 7$ sage: E.discriminant().factor()  gp: E.disc  magma: Discriminant(E); Discriminant: $-7340032$ = $-1 \cdot 2^{20} \cdot 7$ sage: E.j_invariant().factor()  gp: E.j  magma: jInvariant(E); j-invariant: $$-\frac{15625}{28}$$ = $-1 \cdot 2^{-2} \cdot 5^{6} \cdot 7^{-1}$ Endomorphism ring: $\Z$ Geometric endomorphism ring: $$\Z$$ (no potential complex multiplication) Sato-Tate group: $\mathrm{SU}(2)$ Faltings height: $0.0076358723149200756027692393717\dots$ Stable Faltings height: $-1.0320848985249978885230789428\dots$

## BSD invariants

 sage: E.rank()  magma: Rank(E); Analytic rank: $0$ sage: E.regulator()  magma: Regulator(E); Regulator: $1$ sage: E.period_lattice().omega()  gp: E.omega[1]  magma: RealPeriod(E); Real period: $2.1015304994764674919684779521\dots$ sage: E.tamagawa_numbers()  gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]  magma: TamagawaNumbers(E); Tamagawa product: $4$  = $2^{2}\cdot1$ sage: E.torsion_order()  gp: elltors(E)[1]  magma: Order(TorsionSubgroup(E)); Torsion order: $2$ sage: E.sha().an_numerical()  magma: MordellWeilShaInformation(E); Analytic order of Ш: $1$ (exact) sage: r = E.rank(); sage: E.lseries().dokchitser().derivative(1,r)/r.factorial()  gp: ar = ellanalyticrank(E); gp: ar[2]/factorial(ar[1])  magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12); Special value: $L(E,1)$ ≈ $2.1015304994764674919684779520632416314$

## Modular invariants

sage: E.q_eigenform(20)

gp: xy = elltaniyama(E);

gp: x*deriv(xy[1])/(2*xy[2]+E.a1*xy[1]+E.a3)

magma: ModularForm(E);

$$q + 2q^{3} + q^{7} + q^{9} + 4q^{13} + 6q^{17} - 2q^{19} + O(q^{20})$$

 sage: E.modular_degree()  magma: ModularDegree(E); Modular degree: 64 $\Gamma_0(N)$-optimal: yes Manin constant: 1

## Local data

This elliptic curve is not semistable. There are 2 primes of bad reduction:

sage: E.local_data()

gp: ellglobalred(E)[5]

magma: [LocalInformation(E,p) : p in BadPrimes(E)];

prime Tamagawa number Kodaira symbol Reduction type Root number ord($N$) ord($\Delta$) ord$(j)_{-}$
$2$ $4$ $I_{10}^{*}$ Additive 1 6 20 2
$7$ $1$ $I_{1}$ Split multiplicative -1 1 1 1

## Galois representations

sage: rho = E.galois_representation();

sage: [rho.image_type(p) for p in rho.non_surjective()]

magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];

The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.

prime $\ell$ mod-$\ell$ image $\ell$-adic image
$2$ 2B 8.6.0.1
$3$ 3B 9.12.0.1

## $p$-adic regulators

sage: [E.padic_regulator(p) for p in primes(5,20) if E.conductor().valuation(p)<2]

All $p$-adic regulators are identically $1$ since the rank is $0$.

## Iwasawa invariants

$p$ Reduction type $\lambda$-invariant(s) 2 3 7 add ordinary split - 0 1 - 0 0

All Iwasawa $\lambda$ and $\mu$-invariants for primes $p\ge 5$ of good reduction are zero.

An entry - indicates that the invariants are not computed because the reduction is additive.

## Isogenies

This curve has non-trivial cyclic isogenies of degree $d$ for $d=$ 2, 3, 6, 9 and 18.
Its isogeny class 448c consists of 6 curves linked by isogenies of degrees dividing 18.

## Growth of torsion in number fields

The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:

 $[K:\Q]$ $E(K)_{\rm tors}$ Base change curve $K$ $2$ $$\Q(\sqrt{-7})$$ $$\Z/2\Z \times \Z/2\Z$$ 2.0.7.1-28672.7-o6 $2$ $$\Q(\sqrt{2})$$ $$\Z/6\Z$$ 2.2.8.1-98.1-a2 $4$ 4.2.448.1 $$\Z/12\Z$$ Not in database $4$ $$\Q(\sqrt{2}, \sqrt{-7})$$ $$\Z/2\Z \times \Z/6\Z$$ Not in database $6$ 6.0.132765696.1 $$\Z/6\Z$$ Not in database $6$ 6.6.1229312.1 $$\Z/18\Z$$ 6.6.1229312.1-392.1-k2 $8$ 8.0.1927561216.2 $$\Z/2\Z \times \Z/4\Z$$ Not in database $8$ 8.0.9834496.2 $$\Z/2\Z \times \Z/12\Z$$ Not in database $12$ Deg 12 $$\Z/3\Z \times \Z/6\Z$$ Not in database $12$ 12.0.7341411926016.1 $$\Z/18\Z$$ Not in database $12$ Deg 12 $$\Z/2\Z \times \Z/6\Z$$ Not in database $12$ 12.0.74049191673856.2 $$\Z/2\Z \times \Z/18\Z$$ Not in database $12$ 12.6.10578455953408.1 $$\Z/36\Z$$ Not in database $16$ Deg 16 $$\Z/24\Z$$ Not in database $16$ 16.0.59447875862838378496.2 $$\Z/2\Z \times \Z/12\Z$$ Not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.