Properties

Label 44880br8
Conductor $44880$
Discriminant $2.263\times 10^{15}$
j-invariant \( \frac{901247067798311192691198986281}{552431869440} \)
CM no
Rank $1$
Torsion structure \(\Z/{2}\Z\)

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

\(y^2=x^3-x^2-3219783720x+70322579406960\) Copy content Toggle raw display (homogenize, simplify)
\(y^2z=x^3-x^2z-3219783720xz^2+70322579406960z^3\) Copy content Toggle raw display (dehomogenize, simplify)
\(y^2=x^3-260802481347x+51264377980229826\) Copy content Toggle raw display (homogenize, minimize)

sage: E = EllipticCurve([0, -1, 0, -3219783720, 70322579406960])
 
gp: E = ellinit([0, -1, 0, -3219783720, 70322579406960])
 
magma: E := EllipticCurve([0, -1, 0, -3219783720, 70322579406960]);
 
sage: E.short_weierstrass_model()
 
magma: WeierstrassModel(E);
 

Mordell-Weil group structure

\(\Z \oplus \Z/{2}\Z\)

Infinite order Mordell-Weil generator and height

sage: E.gens()
 
magma: Generators(E);
 

$P$ =  \(\left(\frac{398536258058}{10452289}, \frac{58401192145401014}{33792250337}\right)\) Copy content Toggle raw display
$\hat{h}(P)$ ≈  $24.502521496642669394172974313$

Torsion generators

sage: E.torsion_subgroup().gens()
 
gp: elltors(E)
 
magma: TorsionSubgroup(E);
 

\( \left(32761, 0\right) \) Copy content Toggle raw display

Integral points

sage: E.integral_points()
 
magma: IntegralPoints(E);
 

\( \left(32761, 0\right) \) Copy content Toggle raw display

Invariants

sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor: \( 44880 \)  =  $2^{4} \cdot 3 \cdot 5 \cdot 11 \cdot 17$
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant: $2262760937226240 $  =  $2^{21} \cdot 3 \cdot 5 \cdot 11^{4} \cdot 17^{3} $
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
j-invariant: \( \frac{901247067798311192691198986281}{552431869440} \)  =  $2^{-9} \cdot 3^{-1} \cdot 5^{-1} \cdot 11^{-4} \cdot 17^{-3} \cdot 181^{3} \cdot 1163^{3} \cdot 45887^{3}$
Endomorphism ring: $\Z$
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
Sato-Tate group: $\mathrm{SU}(2)$
Faltings height: $3.6539346294720073882316510965\dots$
Stable Faltings height: $2.9607874489120620788144189750\dots$

BSD invariants

sage: E.rank()
 
magma: Rank(E);
 
Analytic rank: $1$
sage: E.regulator()
 
magma: Regulator(E);
 
Regulator: $24.502521496642669394172974313\dots$
sage: E.period_lattice().omega()
 
gp: E.omega[1]
 
magma: RealPeriod(E);
 
Real period: $0.13376725590652858994413144136\dots$
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
Tamagawa product: $ 8 $  = $ 2^{2}\cdot1\cdot1\cdot2\cdot1 $
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
Torsion order: $2$
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 
Analytic order of Ш: $1$ (exact)
sage: r = E.rank();
 
sage: E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: ar = ellanalyticrank(E);
 
gp: ar[2]/factorial(ar[1])
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Special value: $ L'(E,1) $ ≈ $ 6.5552701267932357263165600597 $

Modular invariants

Modular form 44880.2.a.bh

sage: E.q_eigenform(20)
 
gp: xy = elltaniyama(E);
 
gp: x*deriv(xy[1])/(2*xy[2]+E.a1*xy[1]+E.a3)
 
magma: ModularForm(E);
 

\( q - q^{3} + q^{5} + 4 q^{7} + q^{9} - q^{11} + 2 q^{13} - q^{15} - q^{17} + 4 q^{19} + O(q^{20}) \) Copy content Toggle raw display

For more coefficients, see the Downloads section to the right.

sage: E.modular_degree()
 
magma: ModularDegree(E);
 
Modular degree: 15925248
$ \Gamma_0(N) $-optimal: no
Manin constant: 1

Local data

This elliptic curve is not semistable. There are 5 primes of bad reduction:

sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
prime Tamagawa number Kodaira symbol Reduction type Root number ord($N$) ord($\Delta$) ord$(j)_{-}$
$2$ $4$ $I_{13}^{*}$ Additive -1 4 21 9
$3$ $1$ $I_{1}$ Non-split multiplicative 1 1 1 1
$5$ $1$ $I_{1}$ Split multiplicative -1 1 1 1
$11$ $2$ $I_{4}$ Non-split multiplicative 1 1 4 4
$17$ $1$ $I_{3}$ Non-split multiplicative 1 1 3 3

Galois representations

sage: rho = E.galois_representation();
 
sage: [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.

prime $\ell$ mod-$\ell$ image $\ell$-adic image
$2$ 2B 4.6.0.1
$3$ 3B 3.4.0.1

$p$-adic regulators

sage: [E.padic_regulator(p) for p in primes(5,20) if E.conductor().valuation(p)<2]
 

$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.

Iwasawa invariants

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47
Reduction type add nonsplit split ord nonsplit ord nonsplit ord ss ord ord ord ord ord ord
$\lambda$-invariant(s) - 1 2 5 1 1 1 1 1,1 1 1 1 1 1 1
$\mu$-invariant(s) - 0 0 0 0 0 0 0 0,0 0 0 0 0 0 0

An entry - indicates that the invariants are not computed because the reduction is additive.

Isogenies

This curve has non-trivial cyclic isogenies of degree $d$ for $d=$ 2, 3, 4, 6 and 12.
Its isogeny class 44880br consists of 8 curves linked by isogenies of degrees dividing 12.

Growth of torsion in number fields

The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:

$[K:\Q]$ $K$ $E(K)_{\rm tors}$ Base change curve
$2$ \(\Q(\sqrt{510}) \) \(\Z/2\Z \oplus \Z/2\Z\) Not in database
$2$ \(\Q(\sqrt{6}) \) \(\Z/4\Z\) Not in database
$2$ \(\Q(\sqrt{85}) \) \(\Z/4\Z\) Not in database
$2$ \(\Q(\sqrt{3}) \) \(\Z/6\Z\) Not in database
$4$ \(\Q(\sqrt{6}, \sqrt{85})\) \(\Z/2\Z \oplus \Z/4\Z\) Not in database
$4$ \(\Q(\sqrt{3}, \sqrt{170})\) \(\Z/2\Z \oplus \Z/6\Z\) Not in database
$4$ \(\Q(\sqrt{2}, \sqrt{3})\) \(\Z/12\Z\) Not in database
$4$ \(\Q(\sqrt{3}, \sqrt{85})\) \(\Z/12\Z\) Not in database
$6$ 6.0.34581456360000.2 \(\Z/6\Z\) Not in database
$8$ Deg 8 \(\Z/2\Z \oplus \Z/4\Z\) Not in database
$8$ Deg 8 \(\Z/8\Z\) Not in database
$8$ Deg 8 \(\Z/8\Z\) Not in database
$8$ 8.8.277102632960000.10 \(\Z/2\Z \oplus \Z/12\Z\) Not in database
$12$ Deg 12 \(\Z/3\Z \oplus \Z/6\Z\) Not in database
$12$ Deg 12 \(\Z/2\Z \oplus \Z/6\Z\) Not in database
$12$ Deg 12 \(\Z/12\Z\) Not in database
$12$ Deg 12 \(\Z/12\Z\) Not in database
$16$ Deg 16 \(\Z/4\Z \oplus \Z/4\Z\) Not in database
$16$ Deg 16 \(\Z/2\Z \oplus \Z/8\Z\) Not in database
$16$ Deg 16 \(\Z/2\Z \oplus \Z/8\Z\) Not in database
$16$ Deg 16 \(\Z/2\Z \oplus \Z/12\Z\) Not in database
$16$ Deg 16 \(\Z/24\Z\) Not in database
$16$ Deg 16 \(\Z/24\Z\) Not in database
$18$ 18.6.7899277863494247069268000737426718681804800000000.1 \(\Z/18\Z\) Not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.