# Properties

 Label 44880.bh5 Conductor $44880$ Discriminant $2.401\times 10^{22}$ j-invariant $$\frac{476646772170172569823801}{5862293314453125000}$$ CM no Rank $1$ Torsion structure $$\Z/{2}\Z$$

# Related objects

Show commands: Magma / Pari/GP / SageMath

## Simplified equation

 $$y^2=x^3-x^2-26038200x-50585416848$$ y^2=x^3-x^2-26038200x-50585416848 (homogenize, simplify) $$y^2z=x^3-x^2z-26038200xz^2-50585416848z^3$$ y^2z=x^3-x^2z-26038200xz^2-50585416848z^3 (dehomogenize, simplify) $$y^2=x^3-2109094227x-36883096164846$$ y^2=x^3-2109094227x-36883096164846 (homogenize, minimize)

sage: E = EllipticCurve([0, -1, 0, -26038200, -50585416848])

gp: E = ellinit([0, -1, 0, -26038200, -50585416848])

magma: E := EllipticCurve([0, -1, 0, -26038200, -50585416848]);

sage: E.short_weierstrass_model()

magma: WeierstrassModel(E);

## Mordell-Weil group structure

$$\Z \oplus \Z/{2}\Z$$

### Infinite order Mordell-Weil generator and height

sage: E.gens()

magma: Generators(E);

 $P$ = $$\left(-\frac{147334}{49}, \frac{7770050}{343}\right)$$ (-147334/49, 7770050/343) $\hat{h}(P)$ ≈ $8.1675071655475564647243247712$

## Torsion generators

sage: E.torsion_subgroup().gens()

gp: elltors(E)

magma: TorsionSubgroup(E);

$$\left(-3191, 0\right)$$

## Integral points

sage: E.integral_points()

magma: IntegralPoints(E);

$$\left(-3191, 0\right)$$

## Invariants

 sage: E.conductor().factor()  gp: ellglobalred(E)[1]  magma: Conductor(E); Conductor: $$44880$$ = $2^{4} \cdot 3 \cdot 5 \cdot 11 \cdot 17$ sage: E.discriminant().factor()  gp: E.disc  magma: Discriminant(E); Discriminant: $24011953416000000000000$ = $2^{15} \cdot 3^{3} \cdot 5^{12} \cdot 11^{3} \cdot 17^{4}$ sage: E.j_invariant().factor()  gp: E.j  magma: jInvariant(E); j-invariant: $$\frac{476646772170172569823801}{5862293314453125000}$$ = $2^{-3} \cdot 3^{-3} \cdot 5^{-12} \cdot 11^{-3} \cdot 17^{-4} \cdot 23^{3} \cdot 107^{3} \cdot 31741^{3}$ Endomorphism ring: $\Z$ Geometric endomorphism ring: $$\Z$$ (no potential complex multiplication) Sato-Tate group: $\mathrm{SU}(2)$ Faltings height: $3.1046284851379525425340284780\dots$ Stable Faltings height: $2.4114813045780072331167963565\dots$

## BSD invariants

 sage: E.rank()  magma: Rank(E); Analytic rank: $1$ sage: E.regulator()  magma: Regulator(E); Regulator: $8.1675071655475564647243247712\dots$ sage: E.period_lattice().omega()  gp: E.omega[1]  magma: RealPeriod(E); Real period: $0.066883627953264294972065720682\dots$ sage: E.tamagawa_numbers()  gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]  magma: TamagawaNumbers(E); Tamagawa product: $48$  = $2\cdot1\cdot( 2^{2} \cdot 3 )\cdot1\cdot2$ sage: E.torsion_order()  gp: elltors(E)[1]  magma: Order(TorsionSubgroup(E)); Torsion order: $2$ sage: E.sha().an_numerical()  magma: MordellWeilShaInformation(E); Analytic order of Ш: $1$ (exact) sage: r = E.rank(); sage: E.lseries().dokchitser().derivative(1,r)/r.factorial()  gp: ar = ellanalyticrank(E); gp: ar[2]/factorial(ar[1])  magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12); Special value: $L'(E,1)$ ≈ $6.5552701267932357263165600597$

## Modular invariants

Modular form 44880.2.a.bh

sage: E.q_eigenform(20)

gp: xy = elltaniyama(E);

gp: x*deriv(xy[1])/(2*xy[2]+E.a1*xy[1]+E.a3)

magma: ModularForm(E);

$$q - q^{3} + q^{5} + 4 q^{7} + q^{9} - q^{11} + 2 q^{13} - q^{15} - q^{17} + 4 q^{19} + O(q^{20})$$

 sage: E.modular_degree()  magma: ModularDegree(E); Modular degree: 5308416 $\Gamma_0(N)$-optimal: no Manin constant: 1

## Local data

This elliptic curve is not semistable. There are 5 primes of bad reduction:

sage: E.local_data()

gp: ellglobalred(E)[5]

magma: [LocalInformation(E,p) : p in BadPrimes(E)];

prime Tamagawa number Kodaira symbol Reduction type Root number ord($N$) ord($\Delta$) ord$(j)_{-}$
$2$ $2$ $I_{7}^{*}$ Additive -1 4 15 3
$3$ $1$ $I_{3}$ Non-split multiplicative 1 1 3 3
$5$ $12$ $I_{12}$ Split multiplicative -1 1 12 12
$11$ $1$ $I_{3}$ Non-split multiplicative 1 1 3 3
$17$ $2$ $I_{4}$ Non-split multiplicative 1 1 4 4

## Galois representations

sage: rho = E.galois_representation();

sage: [rho.image_type(p) for p in rho.non_surjective()]

magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];

The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.

prime $\ell$ mod-$\ell$ image $\ell$-adic image
$2$ 2B 4.6.0.1
$3$ 3B 3.4.0.1

## $p$-adic regulators

sage: [E.padic_regulator(p) for p in primes(5,20) if E.conductor().valuation(p)<2]

$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.

## Iwasawa invariants

 $p$ Reduction type $\lambda$-invariant(s) $\mu$-invariant(s) 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 add nonsplit split ord nonsplit ord nonsplit ord ss ord ord ord ord ord ord - 1 2 5 1 1 1 1 1,1 1 1 1 1 1 1 - 0 0 0 0 0 0 0 0,0 0 0 0 0 0 0

An entry - indicates that the invariants are not computed because the reduction is additive.

## Isogenies

This curve has non-trivial cyclic isogenies of degree $d$ for $d=$ 2, 3, 4, 6 and 12.
Its isogeny class 44880.bh consists of 8 curves linked by isogenies of degrees dividing 12.

## Growth of torsion in number fields

The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:

 $[K:\Q]$ $E(K)_{\rm tors}$ Base change curve $K$ $2$ $$\Q(\sqrt{66})$$ $$\Z/2\Z \oplus \Z/2\Z$$ Not in database $2$ $$\Q(\sqrt{-11})$$ $$\Z/4\Z$$ Not in database $2$ $$\Q(\sqrt{-6})$$ $$\Z/4\Z$$ Not in database $2$ $$\Q(\sqrt{-1})$$ $$\Z/6\Z$$ Not in database $4$ $$\Q(\sqrt{-6}, \sqrt{-11})$$ $$\Z/2\Z \oplus \Z/4\Z$$ Not in database $4$ $$\Q(i, \sqrt{66})$$ $$\Z/2\Z \oplus \Z/6\Z$$ Not in database $4$ $$\Q(i, \sqrt{11})$$ $$\Z/12\Z$$ Not in database $4$ $$\Q(i, \sqrt{6})$$ $$\Z/12\Z$$ Not in database $6$ 6.2.144324288.1 $$\Z/6\Z$$ Not in database $8$ 8.4.21667237072994304.4 $$\Z/2\Z \oplus \Z/4\Z$$ Not in database $8$ Deg 8 $$\Z/8\Z$$ Not in database $8$ Deg 8 $$\Z/8\Z$$ Not in database $8$ 8.0.77720518656.3 $$\Z/2\Z \oplus \Z/12\Z$$ Not in database $12$ Deg 12 $$\Z/3\Z \oplus \Z/6\Z$$ Not in database $12$ Deg 12 $$\Z/2\Z \oplus \Z/6\Z$$ Not in database $12$ Deg 12 $$\Z/12\Z$$ Not in database $12$ Deg 12 $$\Z/12\Z$$ Not in database $16$ Deg 16 $$\Z/4\Z \oplus \Z/12\Z$$ Not in database $16$ Deg 16 $$\Z/2\Z \oplus \Z/8\Z$$ Not in database $16$ Deg 16 $$\Z/2\Z \oplus \Z/8\Z$$ Not in database $16$ Deg 16 $$\Z/24\Z$$ Not in database $16$ Deg 16 $$\Z/24\Z$$ Not in database $18$ 18.0.288483652812414620627229476211233772096000000000000.1 $$\Z/18\Z$$ Not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.