# Properties

 Label 448.e2 Conductor $448$ Discriminant $314703872$ j-invariant $$\frac{11090466}{2401}$$ CM no Rank $1$ Torsion structure $$\Z/{4}\Z$$

# Related objects

Show commands: Magma / Pari/GP / SageMath

## Simplified equation

 $$y^2=x^3-236x+1104$$ y^2=x^3-236x+1104 (homogenize, simplify) $$y^2z=x^3-236xz^2+1104z^3$$ y^2z=x^3-236xz^2+1104z^3 (dehomogenize, simplify) $$y^2=x^3-236x+1104$$ y^2=x^3-236x+1104 (homogenize, minimize)

sage: E = EllipticCurve([0, 0, 0, -236, 1104])

gp: E = ellinit([0, 0, 0, -236, 1104])

magma: E := EllipticCurve([0, 0, 0, -236, 1104]);

sage: E.short_weierstrass_model()

magma: WeierstrassModel(E);

## Mordell-Weil group structure

$$\Z \oplus \Z/{4}\Z$$

### Infinite order Mordell-Weil generator and height

sage: E.gens()

magma: Generators(E);

 $P$ = $$\left(5, 7\right)$$ (5, 7) $\hat{h}(P)$ ≈ $1.0691085767972255605925653628$

## Torsion generators

sage: E.torsion_subgroup().gens()

gp: elltors(E)

magma: TorsionSubgroup(E);

$$\left(26, 112\right)$$

## Integral points

sage: E.integral_points()

magma: IntegralPoints(E);

$$(-16,\pm 28)$$, $$(-6,\pm 48)$$, $$(5,\pm 7)$$, $$\left(12, 0\right)$$, $$(26,\pm 112)$$

## Invariants

 sage: E.conductor().factor()  gp: ellglobalred(E)[1]  magma: Conductor(E); Conductor: $$448$$ = $2^{6} \cdot 7$ sage: E.discriminant().factor()  gp: E.disc  magma: Discriminant(E); Discriminant: $314703872$ = $2^{17} \cdot 7^{4}$ sage: E.j_invariant().factor()  gp: E.j  magma: jInvariant(E); j-invariant: $$\frac{11090466}{2401}$$ = $2 \cdot 3^{3} \cdot 7^{-4} \cdot 59^{3}$ Endomorphism ring: $\Z$ Geometric endomorphism ring: $$\Z$$ (no potential complex multiplication) Sato-Tate group: $\mathrm{SU}(2)$ Faltings height: $0.34454076348138516636207252373\dots$ Stable Faltings height: $-0.63741774231187068864567298167\dots$

## BSD invariants

 sage: E.rank()  magma: Rank(E); Analytic rank: $1$ sage: E.regulator()  magma: Regulator(E); Regulator: $1.0691085767972255605925653628\dots$ sage: E.period_lattice().omega()  gp: if(E.disc>0,2,1)*E.omega[1]  magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E); Real period: $1.6236666926210273234649262972\dots$ sage: E.tamagawa_numbers()  gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]  magma: TamagawaNumbers(E); Tamagawa product: $16$  = $2^{2}\cdot2^{2}$ sage: E.torsion_order()  gp: elltors(E)[1]  magma: Order(TorsionSubgroup(E)); Torsion order: $4$ sage: E.sha().an_numerical()  magma: MordellWeilShaInformation(E); Analytic order of Ш: $1$ (exact) sage: r = E.rank(); sage: E.lseries().dokchitser().derivative(1,r)/r.factorial()  gp: ar = ellanalyticrank(E); gp: ar[2]/factorial(ar[1])  magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12); Special value: $L'(E,1)$ ≈ $1.7358759869411248186869537581$

## Modular invariants

sage: E.q_eigenform(20)

gp: xy = elltaniyama(E);

gp: x*deriv(xy[1])/(2*xy[2]+E.a1*xy[1]+E.a3)

magma: ModularForm(E);

$$q - 2 q^{5} + q^{7} - 3 q^{9} - 4 q^{11} - 2 q^{13} - 6 q^{17} + 8 q^{19} + O(q^{20})$$

 sage: E.modular_degree()  magma: ModularDegree(E); Modular degree: 128 $\Gamma_0(N)$-optimal: no Manin constant: 1

## Local data

This elliptic curve is not semistable. There are 2 primes of bad reduction:

sage: E.local_data()

gp: ellglobalred(E)[5]

magma: [LocalInformation(E,p) : p in BadPrimes(E)];

prime Tamagawa number Kodaira symbol Reduction type Root number ord($N$) ord($\Delta$) ord$(j)_{-}$
$2$ $4$ $I_{7}^{*}$ Additive -1 6 17 0
$7$ $4$ $I_{4}$ Split multiplicative -1 1 4 4

## Galois representations

sage: rho = E.galois_representation();

sage: [rho.image_type(p) for p in rho.non_surjective()]

magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];

The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.

prime $\ell$ mod-$\ell$ image $\ell$-adic image
$2$ 2B 8.24.0.49

The image of the adelic Galois representation has level $56$, index $48$, and genus $0$.

## $p$-adic regulators

sage: [E.padic_regulator(p) for p in primes(5,20) if E.conductor().valuation(p)<2]

$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.

## Iwasawa invariants

 $p$ Reduction type $\lambda$-invariant(s) $\mu$-invariant(s) 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 add ss ord split ord ord ord ord ss ord ord ord ord ord ord - 3,1 1 2 1 3 1 1 1,1 1 1 1 1 1 1 - 0,0 0 0 0 0 0 0 0,0 0 0 0 0 0 0

An entry - indicates that the invariants are not computed because the reduction is additive.

## Isogenies

This curve has non-trivial cyclic isogenies of degree $d$ for $d=$ 2 and 4.
Its isogeny class 448.e consists of 4 curves linked by isogenies of degrees dividing 4.

## Growth of torsion in number fields

The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{4}\Z$ are as follows:

 $[K:\Q]$ $E(K)_{\rm tors}$ Base change curve $K$ $2$ $$\Q(\sqrt{2})$$ $$\Z/2\Z \oplus \Z/4\Z$$ 2.2.8.1-784.1-d3 $4$ 4.4.100352.2 $$\Z/8\Z$$ Not in database $8$ 8.0.16777216.2 $$\Z/4\Z \oplus \Z/4\Z$$ Not in database $8$ 8.8.40282095616.2 $$\Z/2\Z \oplus \Z/8\Z$$ Not in database $8$ 8.0.157351936.3 $$\Z/2\Z \oplus \Z/8\Z$$ Not in database $8$ 8.2.344128684032.22 $$\Z/12\Z$$ Not in database $16$ Deg 16 $$\Z/16\Z$$ Not in database $16$ Deg 16 $$\Z/2\Z \oplus \Z/12\Z$$ Not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.