Properties

Label 446400.ok1
Conductor $446400$
Discriminant $4.053\times 10^{24}$
j-invariant \( \frac{28379906689597370652529}{1357352437500} \)
CM no
Rank $1$
Torsion structure \(\Z/{2}\Z\)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

\(y^2=x^3-9150782700x-336926724046000\) Copy content Toggle raw display (homogenize, simplify)
\(y^2z=x^3-9150782700xz^2-336926724046000z^3\) Copy content Toggle raw display (dehomogenize, simplify)
\(y^2=x^3-9150782700x-336926724046000\) Copy content Toggle raw display (homogenize, minimize)

comment: Define the curve
 
sage: E = EllipticCurve([0, 0, 0, -9150782700, -336926724046000])
 
gp: E = ellinit([0, 0, 0, -9150782700, -336926724046000])
 
magma: E := EllipticCurve([0, 0, 0, -9150782700, -336926724046000]);
 
oscar: E = EllipticCurve([0, 0, 0, -9150782700, -336926724046000])
 
sage: E.short_weierstrass_model()
 
magma: WeierstrassModel(E);
 
oscar: short_weierstrass_model(E)
 

Mordell-Weil group structure

\(\Z \oplus \Z/{2}\Z\)

magma: MordellWeilGroup(E);
 

Infinite order Mordell-Weil generator and height

$P$ =  \(\left(\frac{434728829780899017754551925992272877680}{2967828089786149091386272165871681}, \frac{6189697512025559300046239671285455192370154956020772362500}{161680674205474975553929311938807214704433538573921}\right)\) Copy content Toggle raw display
$\hat{h}(P)$ ≈  $84.570980969820271113051814002$

sage: E.gens()
 
magma: Generators(E);
 
gp: E.gen
 

Torsion generators

\( \left(-55220, 0\right) \) Copy content Toggle raw display

comment: Torsion subgroup
 
sage: E.torsion_subgroup().gens()
 
gp: elltors(E)
 
magma: TorsionSubgroup(E);
 
oscar: torsion_structure(E)
 

Integral points

\( \left(-55220, 0\right) \) Copy content Toggle raw display

comment: Integral points
 
sage: E.integral_points()
 
magma: IntegralPoints(E);
 

Invariants

Conductor: \( 446400 \)  =  $2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 31$
comment: Conductor
 
sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
oscar: conductor(E)
 
Discriminant: $4053032660736000000000000 $  =  $2^{20} \cdot 3^{12} \cdot 5^{12} \cdot 31^{3} $
comment: Discriminant
 
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
oscar: discriminant(E)
 
j-invariant: \( \frac{28379906689597370652529}{1357352437500} \)  =  $2^{-2} \cdot 3^{-6} \cdot 5^{-6} \cdot 31^{-3} \cdot 43^{3} \cdot 223^{3} \cdot 3181^{3}$
comment: j-invariant
 
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
oscar: j_invariant(E)
 
Endomorphism ring: $\Z$
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$
Faltings height: $4.1990645051205053073663679012\dots$
gp: ellheight(E)
 
magma: FaltingsHeight(E);
 
oscar: faltings_height(E)
 
Stable Faltings height: $1.8053186337294823102425174339\dots$
magma: StableFaltingsHeight(E);
 
oscar: stable_faltings_height(E)
 
$abc$ quality: $1.035687713938833\dots$
Szpiro ratio: $6.182266123092967\dots$

BSD invariants

Analytic rank: $1$
sage: E.analytic_rank()
 
gp: ellanalyticrank(E)
 
magma: AnalyticRank(E);
 
Regulator: $84.570980969820271113051814002\dots$
comment: Regulator
 
sage: E.regulator()
 
G = E.gen \\ if available
 
matdet(ellheightmatrix(E,G))
 
magma: Regulator(E);
 
Real period: $0.015436008011733763480460372642\dots$
comment: Real Period
 
sage: E.period_lattice().omega()
 
gp: if(E.disc>0,2,1)*E.omega[1]
 
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: $ 32 $  = $ 2\cdot2^{2}\cdot2^{2}\cdot1 $
comment: Tamagawa numbers
 
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
oscar: tamagawa_numbers(E)
 
Torsion order: $2$
comment: Torsion order
 
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
oscar: prod(torsion_structure(E)[1])
 
Analytic order of Ш: $1$ ( rounded)
comment: Order of Sha
 
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 
Special value: $ L'(E,1) $ ≈ $ 10.443506718482634811788983605 $
comment: Special L-value
 
r = E.rank();
 
E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 

BSD formula

$\displaystyle 10.443506718 \approx L'(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 0.015436 \cdot 84.570981 \cdot 32}{2^2} \approx 10.443506718$

# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
 
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
 
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
 
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
 
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analyiic sha) */
 
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
 
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
 
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
 
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form 446400.2.a.ok

\( q + 2 q^{7} - 4 q^{13} + 6 q^{17} + 8 q^{19} + O(q^{20}) \) Copy content Toggle raw display

comment: q-expansion of modular form
 
sage: E.q_eigenform(20)
 
\\ actual modular form, use for small N
 
[mf,F] = mffromell(E)
 
Ser(mfcoefs(mf,20),q)
 
\\ or just the series
 
Ser(ellan(E,20),q)*q
 
magma: ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 318504960
comment: Modular degree
 
sage: E.modular_degree()
 
gp: ellmoddegree(E)
 
magma: ModularDegree(E);
 
$ \Gamma_0(N) $-optimal: no
Manin constant: 1 (conditional*)
comment: Manin constant
 
magma: ManinConstant(E);
 
* The Manin constant is correct provided that curve 446400.ok4 is optimal.

Local data

This elliptic curve is not semistable. There are 4 primes of bad reduction:

prime Tamagawa number Kodaira symbol Reduction type Root number ord($N$) ord($\Delta$) ord$(j)_{-}$
$2$ $2$ $I_{10}^{*}$ Additive -1 6 20 2
$3$ $4$ $I_{6}^{*}$ Additive -1 2 12 6
$5$ $4$ $I_{6}^{*}$ Additive 1 2 12 6
$31$ $1$ $I_{3}$ Non-split multiplicative 1 1 3 3

comment: Local data
 
sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.

prime $\ell$ mod-$\ell$ image $\ell$-adic image
$2$ 2B 2.3.0.1
$3$ 3B 3.4.0.1

comment: mod p Galois image
 
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

gens = [[3709, 3718, 1910, 1869], [11, 2, 3670, 3711], [1117, 12, 1122, 73], [1859, 0, 0, 3719], [1, 0, 12, 1], [3709, 12, 3708, 13], [1, 6, 6, 37], [2479, 3708, 2474, 3647], [1, 12, 0, 1], [1086, 1717, 1085, 1706], [2450, 3717, 2127, 1868], [1871, 3708, 1872, 3707]]
 
GL(2,Integers(3720)).subgroup(gens)
 
Gens := [[3709, 3718, 1910, 1869], [11, 2, 3670, 3711], [1117, 12, 1122, 73], [1859, 0, 0, 3719], [1, 0, 12, 1], [3709, 12, 3708, 13], [1, 6, 6, 37], [2479, 3708, 2474, 3647], [1, 12, 0, 1], [1086, 1717, 1085, 1706], [2450, 3717, 2127, 1868], [1871, 3708, 1872, 3707]];
 
sub<GL(2,Integers(3720))|Gens>;
 

The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 3720 = 2^{3} \cdot 3 \cdot 5 \cdot 31 \), index $96$, genus $1$, and generators

$\left(\begin{array}{rr} 3709 & 3718 \\ 1910 & 1869 \end{array}\right),\left(\begin{array}{rr} 11 & 2 \\ 3670 & 3711 \end{array}\right),\left(\begin{array}{rr} 1117 & 12 \\ 1122 & 73 \end{array}\right),\left(\begin{array}{rr} 1859 & 0 \\ 0 & 3719 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 12 & 1 \end{array}\right),\left(\begin{array}{rr} 3709 & 12 \\ 3708 & 13 \end{array}\right),\left(\begin{array}{rr} 1 & 6 \\ 6 & 37 \end{array}\right),\left(\begin{array}{rr} 2479 & 3708 \\ 2474 & 3647 \end{array}\right),\left(\begin{array}{rr} 1 & 12 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1086 & 1717 \\ 1085 & 1706 \end{array}\right),\left(\begin{array}{rr} 2450 & 3717 \\ 2127 & 1868 \end{array}\right),\left(\begin{array}{rr} 1871 & 3708 \\ 1872 & 3707 \end{array}\right)$.

Input positive integer $m$ to see the generators of the reduction of $H$ to $\mathrm{GL}_2(\Z/m\Z)$:

The torsion field $K:=\Q(E[3720])$ is a degree-$329121792000$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/3720\Z)$.

Isogenies

gp: ellisomat(E)
 

This curve has non-trivial cyclic isogenies of degree $d$ for $d=$ 2, 3 and 6.
Its isogeny class 446400.ok consists of 4 curves linked by isogenies of degrees dividing 6.

Twists

The minimal quadratic twist of this elliptic curve is 930.n1, its twist by $120$.

Iwasawa invariants

No Iwasawa invariant data is available for this curve.

$p$-adic regulators

$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.