Show commands for:
SageMath
sage: E = EllipticCurve("cs1")
sage: E.isogeny_class()
Elliptic curves in class 444675cs
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | Torsion structure | Modular degree | Optimality |
---|---|---|---|---|---|
444675.cs6 | 444675cs1 | [1, 0, 0, 5184787, -1320002849208] | [2] | 132710400 | \(\Gamma_0(N)\)-optimal* |
444675.cs5 | 444675cs2 | [1, 0, 0, -1774256338, -28255403158333] | [2, 2] | 265420800 | \(\Gamma_0(N)\)-optimal* |
444675.cs4 | 444675cs3 | [1, 0, 0, -3771588213, 47014048551042] | [2] | 530841600 | \(\Gamma_0(N)\)-optimal* |
444675.cs2 | 444675cs4 | [1, 0, 0, -28247982463, -1827383356887208] | [2, 2] | 530841600 | |
444675.cs3 | 444675cs5 | [1, 0, 0, -28107909838, -1846402838127583] | [2] | 1061683200 | |
444675.cs1 | 444675cs6 | [1, 0, 0, -451967673088, -116952447019390333] | [2] | 1061683200 |
Rank
sage: E.rank()
The elliptic curves in class 444675cs have rank \(0\).
Complex multiplication
The elliptic curves in class 444675cs do not have complex multiplication.Modular form 444675.2.a.cs
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rrrrrr} 1 & 2 & 4 & 4 & 8 & 8 \\ 2 & 1 & 2 & 2 & 4 & 4 \\ 4 & 2 & 1 & 4 & 8 & 8 \\ 4 & 2 & 4 & 1 & 2 & 2 \\ 8 & 4 & 8 & 2 & 1 & 4 \\ 8 & 4 & 8 & 2 & 4 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.