Properties

Label 444675cs
Number of curves $6$
Conductor $444675$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more about

Show commands for: SageMath
sage: E = EllipticCurve("cs1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 444675cs

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
444675.cs6 444675cs1 [1, 0, 0, 5184787, -1320002849208] [2] 132710400 \(\Gamma_0(N)\)-optimal*
444675.cs5 444675cs2 [1, 0, 0, -1774256338, -28255403158333] [2, 2] 265420800 \(\Gamma_0(N)\)-optimal*
444675.cs4 444675cs3 [1, 0, 0, -3771588213, 47014048551042] [2] 530841600 \(\Gamma_0(N)\)-optimal*
444675.cs2 444675cs4 [1, 0, 0, -28247982463, -1827383356887208] [2, 2] 530841600  
444675.cs3 444675cs5 [1, 0, 0, -28107909838, -1846402838127583] [2] 1061683200  
444675.cs1 444675cs6 [1, 0, 0, -451967673088, -116952447019390333] [2] 1061683200  
*optimality has not been determined rigorously for conductors over 400000. In this case the optimal curve is certainly one of the 3 curves highlighted, and conditionally curve 444675cs1.

Rank

sage: E.rank()
 

The elliptic curves in class 444675cs have rank \(0\).

Complex multiplication

The elliptic curves in class 444675cs do not have complex multiplication.

Modular form 444675.2.a.cs

sage: E.q_eigenform(10)
 
\( q - q^{2} + q^{3} - q^{4} - q^{6} + 3q^{8} + q^{9} - q^{12} + 2q^{13} - q^{16} - 2q^{17} - q^{18} + 4q^{19} + O(q^{20}) \)

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrrrr} 1 & 2 & 4 & 4 & 8 & 8 \\ 2 & 1 & 2 & 2 & 4 & 4 \\ 4 & 2 & 1 & 4 & 8 & 8 \\ 4 & 2 & 4 & 1 & 2 & 2 \\ 8 & 4 & 8 & 2 & 1 & 4 \\ 8 & 4 & 8 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.