# Properties

 Label 444360bm4 Conductor $444360$ Discriminant $3.677\times 10^{22}$ j-invariant $$\frac{198048499826486404}{242568272835}$$ CM no Rank $0$ Torsion structure $$\Z/{2}\Z$$

# Related objects

Show commands: Magma / Pari/GP / SageMath

## Minimal Weierstrass equation

sage: E = EllipticCurve([0, 1, 0, -64749776, -200351336496])

gp: E = ellinit([0, 1, 0, -64749776, -200351336496])

magma: E := EllipticCurve([0, 1, 0, -64749776, -200351336496]);

$$y^2=x^3+x^2-64749776x-200351336496$$

## Mordell-Weil group structure

$\Z/{2}\Z$

## Torsion generators

sage: E.torsion_subgroup().gens()

gp: elltors(E)

magma: TorsionSubgroup(E);

$$\left(-4769, 0\right)$$

## Integral points

sage: E.integral_points()

magma: IntegralPoints(E);

$$\left(-4769, 0\right)$$

## Invariants

 sage: E.conductor().factor()  gp: ellglobalred(E)[1]  magma: Conductor(E); Conductor: $$444360$$ = $2^{3} \cdot 3 \cdot 5 \cdot 7 \cdot 23^{2}$ sage: E.discriminant().factor()  gp: E.disc  magma: Discriminant(E); Discriminant: $36770621350219545922560$ = $2^{10} \cdot 3^{16} \cdot 5 \cdot 7^{2} \cdot 23^{7}$ sage: E.j_invariant().factor()  gp: E.j  magma: jInvariant(E); j-invariant: $$\frac{198048499826486404}{242568272835}$$ = $2^{2} \cdot 3^{-16} \cdot 5^{-1} \cdot 7^{-2} \cdot 23^{-1} \cdot 367201^{3}$ Endomorphism ring: $\Z$ Geometric endomorphism ring: $$\Z$$ (no potential complex multiplication) Sato-Tate group: $\mathrm{SU}(2)$ Faltings height: $3.2398288398378576675220951438\dots$ Stable Faltings height: $1.0944590814066617309376919600\dots$

## BSD invariants

 sage: E.rank()  magma: Rank(E); Analytic rank: $0$ sage: E.regulator()  magma: Regulator(E); Regulator: $1$ sage: E.period_lattice().omega()  gp: E.omega[1]  magma: RealPeriod(E); Real period: $0.053225766763049517210833335010\dots$ sage: E.tamagawa_numbers()  gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]  magma: TamagawaNumbers(E); Tamagawa product: $256$  = $2\cdot2^{4}\cdot1\cdot2\cdot2^{2}$ sage: E.torsion_order()  gp: elltors(E)[1]  magma: Order(TorsionSubgroup(E)); Torsion order: $2$ sage: E.sha().an_numerical()  magma: MordellWeilShaInformation(E); Analytic order of Ш: $1$ (exact) sage: r = E.rank(); sage: E.lseries().dokchitser().derivative(1,r)/r.factorial()  gp: ar = ellanalyticrank(E); gp: ar[2]/factorial(ar[1])  magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12); Special value: $L(E,1)$ ≈ $3.4064490728351691014933334406459739082$

## Modular invariants

Modular form 444360.2.a.bm

sage: E.q_eigenform(20)

gp: xy = elltaniyama(E);

gp: x*deriv(xy[1])/(2*xy[2]+E.a1*xy[1]+E.a3)

magma: ModularForm(E);

$$q + q^{3} - q^{5} - q^{7} + q^{9} + 4 q^{11} - 2 q^{13} - q^{15} - 2 q^{17} + 4 q^{19} + O(q^{20})$$

 sage: E.modular_degree()  magma: ModularDegree(E); Modular degree: 60555264 $\Gamma_0(N)$-optimal: no Manin constant: 1 (conditional*)
* The Manin constant is correct provided that curve 444360bm1 is optimal.

## Local data

This elliptic curve is not semistable. There are 5 primes of bad reduction:

sage: E.local_data()

gp: ellglobalred(E)[5]

magma: [LocalInformation(E,p) : p in BadPrimes(E)];

prime Tamagawa number Kodaira symbol Reduction type Root number ord($N$) ord($\Delta$) ord$(j)_{-}$
$2$ $2$ $III^{*}$ Additive -1 3 10 0
$3$ $16$ $I_{16}$ Split multiplicative -1 1 16 16
$5$ $1$ $I_{1}$ Non-split multiplicative 1 1 1 1
$7$ $2$ $I_{2}$ Non-split multiplicative 1 1 2 2
$23$ $4$ $I_{1}^{*}$ Additive -1 2 7 1

## Galois representations

sage: rho = E.galois_representation();

sage: [rho.image_type(p) for p in rho.non_surjective()]

magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];

The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.

prime $\ell$ mod-$\ell$ image $\ell$-adic image
$2$ 2B 16.24.0.8

## $p$-adic regulators

sage: [E.padic_regulator(p) for p in primes(5,20) if E.conductor().valuation(p)<2]

All $p$-adic regulators are identically $1$ since the rank is $0$.

No Iwasawa invariant data is available for this curve.

## Isogenies

This curve has non-trivial cyclic isogenies of degree $d$ for $d=$ 2, 4 and 8.
Its isogeny class 444360bm consists of 4 curves linked by isogenies of degrees dividing 8.