Properties

Label 444360.p3
Conductor $444360$
Discriminant $1.045\times 10^{16}$
j-invariant \( \frac{2533446736}{275625} \)
CM no
Rank $2$
Torsion structure \(\Z/{2}\Z \times \Z/{2}\Z\)

Related objects

Downloads

Learn more about

Show commands for: Magma / Pari/GP / SageMath

Minimal Weierstrass equation

sage: E = EllipticCurve([0, -1, 0, -95396, -10187580]) # or
 
sage: E = EllipticCurve("444360p2")
 
gp: E = ellinit([0, -1, 0, -95396, -10187580]) \\ or
 
gp: E = ellinit("444360p2")
 
magma: E := EllipticCurve([0, -1, 0, -95396, -10187580]); // or
 
magma: E := EllipticCurve("444360p2");
 

\( y^2 = x^{3} - x^{2} - 95396 x - 10187580 \)

Mordell-Weil group structure

\(\Z^2 \times \Z/{2}\Z \times \Z/{2}\Z\)

Infinite order Mordell-Weil generators and heights

sage: E.gens()
 
magma: Generators(E);
 

\(P\) =  \( \left(-176, 1058\right) \)\( \left(-\frac{17936}{81}, \frac{125902}{729}\right) \)
\(\hat{h}(P)\) ≈  $1.3939863771151964$$4.857140423622113$

Torsion generators

sage: E.torsion_subgroup().gens()
 
gp: elltors(E)
 
magma: TorsionSubgroup(E);
 

\( \left(-222, 0\right) \), \( \left(-130, 0\right) \)

Integral points

sage: E.integral_points()
 
magma: IntegralPoints(E);
 

\( \left(-222, 0\right) \), \((-176,\pm 1058)\), \((-172,\pm 1050)\), \( \left(-130, 0\right) \), \( \left(353, 0\right) \), \((354,\pm 528)\), \((356,\pm 918)\), \((836,\pm 22218)\), \((928,\pm 26450)\), \((37316,\pm 7208118)\), \((92928,\pm 28327950)\), \((278078,\pm 146638800)\), \((522020,\pm 377163990)\)

Invariants

sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor: \( 444360 \)  =  \(2^{3} \cdot 3 \cdot 5 \cdot 7 \cdot 23^{2}\)
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant: \(10445412327840000 \)  =  \(2^{8} \cdot 3^{2} \cdot 5^{4} \cdot 7^{2} \cdot 23^{6} \)
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
j-invariant: \( \frac{2533446736}{275625} \)  =  \(2^{4} \cdot 3^{-2} \cdot 5^{-4} \cdot 7^{-2} \cdot 541^{3}\)
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
Sato-Tate group: $\mathrm{SU}(2)$

BSD invariants

sage: E.rank()
 
magma: Rank(E);
 
Rank: \(2\)
sage: E.regulator()
 
magma: Regulator(E);
 
Regulator: \(6.66238690871323\)
sage: E.period_lattice().omega()
 
gp: E.omega[1]
 
magma: RealPeriod(E);
 
Real period: \(0.273570888867536\)
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
Tamagawa product: \( 128 \)  = \( 2^{2}\cdot2\cdot2\cdot2\cdot2^{2} \)
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
Torsion order: \(4\)
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 
Analytic order of Ш: \(1\) (rounded)

Modular invariants

Modular form 444360.2.a.p

sage: E.q_eigenform(20)
 
gp: xy = elltaniyama(E);
 
gp: x*deriv(xy[1])/(2*xy[2]+E.a1*xy[1]+E.a3)
 
magma: ModularForm(E);
 

\( q - q^{3} - q^{5} + q^{7} + q^{9} + 4q^{11} - 2q^{13} + q^{15} - 2q^{17} + 4q^{19} + O(q^{20}) \)

For more coefficients, see the Downloads section to the right.

sage: E.modular_degree()
 
magma: ModularDegree(E);
 
Modular degree: 3244032
\( \Gamma_0(N) \)-optimal: unknown* (one of 4 curves in this isogeny class which might be optimal)
Manin constant: 1 (conditional*)
* The optimal curve in each isogeny class has not been determined in all cases for conductors over 400000. The Manin constant is correct provided that curve 444360.p4 is optimal.

Special L-value

sage: r = E.rank();
 
sage: E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: ar = ellanalyticrank(E);
 
gp: ar[2]/factorial(ar[1])
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 

\( L^{(2)}(E,1)/2! \) ≈ \( 14.581080868768902 \)

Local data

This elliptic curve is not semistable.

sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
prime Tamagawa number Kodaira symbol Reduction type Root number ord(\(N\)) ord(\(\Delta\)) ord\((j)_{-}\)
\(2\) \(4\) \( I_1^{*} \) Additive -1 3 8 0
\(3\) \(2\) \( I_{2} \) Non-split multiplicative 1 1 2 2
\(5\) \(2\) \( I_{4} \) Non-split multiplicative 1 1 4 4
\(7\) \(2\) \( I_{2} \) Split multiplicative -1 1 2 2
\(23\) \(4\) \( I_0^{*} \) Additive -1 2 6 0

Galois representations

The image of the 2-adic representation attached to this elliptic curve is the subgroup of $\GL(2,\Z_2)$ with Rouse label X25.

This subgroup is the pull-back of the subgroup of $\GL(2,\Z_2/2^2\Z_2)$ generated by $\left(\begin{array}{rr} 3 & 0 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 3 & 0 \\ 0 & 3 \end{array}\right),\left(\begin{array}{rr} 1 & 2 \\ 0 & 1 \end{array}\right)$ and has index 12.

sage: rho = E.galois_representation();
 
sage: [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

The mod \( p \) Galois representation has maximal image \(\GL(2,\F_p)\) for all primes \( p \) except those listed.

prime Image of Galois representation
\(2\) Cs

$p$-adic data

$p$-adic regulators

sage: [E.padic_regulator(p) for p in primes(3,20) if E.conductor().valuation(p)<2]
 

\(p\)-adic regulators are not yet computed for curves that are not \(\Gamma_0\)-optimal.

No Iwasawa invariant data is available for this curve.

Isogenies

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2 and 4.
Its isogeny class 444360.p consists of 6 curves linked by isogenies of degrees dividing 8.