Minimal Weierstrass equation
\(y^2=x^3-x^2+4584904x-1372340880\)
Mordell-Weil group structure
trivial
Integral points
None
Invariants
sage: E.conductor().factor()
gp: ellglobalred(E)[1]
magma: Conductor(E);
|
|||
Conductor: | \( 443760 \) | = | \(2^{4} \cdot 3 \cdot 5 \cdot 43^{2}\) |
sage: E.discriminant().factor()
gp: E.disc
magma: Discriminant(E);
|
|||
Discriminant: | \(-6980155803542428876800 \) | = | \(-1 \cdot 2^{15} \cdot 3^{6} \cdot 5^{2} \cdot 43^{8} \) |
sage: E.j_invariant().factor()
gp: E.j
magma: jInvariant(E);
|
|||
j-invariant: | \( \frac{222641831}{145800} \) | = | \(2^{-3} \cdot 3^{-6} \cdot 5^{-2} \cdot 43 \cdot 173^{3}\) |
Endomorphism ring: | \(\Z\) | ||
Geometric endomorphism ring: | \(\Z\) | (no potential complex multiplication) | |
Sato-Tate group: | $\mathrm{SU}(2)$ |
BSD invariants
sage: E.rank()
magma: Rank(E);
|
|||
Analytic rank: | \(0\) | ||
sage: E.regulator()
magma: Regulator(E);
|
|||
Regulator: | \(1\) | ||
sage: E.period_lattice().omega()
gp: E.omega[1]
magma: RealPeriod(E);
|
|||
Real period: | \(0.075780457983670489591593581793\) | ||
sage: E.tamagawa_numbers()
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
magma: TamagawaNumbers(E);
|
|||
Tamagawa product: | \( 16 \) = \( 2^{2}\cdot2\cdot2\cdot1 \) | ||
sage: E.torsion_order()
gp: elltors(E)[1]
magma: Order(TorsionSubgroup(E));
|
|||
Torsion order: | \(1\) | ||
sage: E.sha().an_numerical()
magma: MordellWeilShaInformation(E);
|
|||
Analytic order of Ш: | \(1\) (exact) |
Modular invariants
Modular form 443760.2.a.c
For more coefficients, see the Downloads section to the right.
sage: E.modular_degree()
magma: ModularDegree(E);
|
|||
Modular degree: | 24966144 | ||
\( \Gamma_0(N) \)-optimal: | not computed* (one of 2 curves in this isogeny class which might be optimal) | ||
Manin constant: | 1 (conditional*) |
Special L-value
\( L(E,1) \) ≈ \( 1.2124873277387278334654973086846270011 \)
Local data
This elliptic curve is not semistable. There are 4 primes of bad reduction:
prime | Tamagawa number | Kodaira symbol | Reduction type | Root number | ord(\(N\)) | ord(\(\Delta\)) | ord\((j)_{-}\) |
---|---|---|---|---|---|---|---|
\(2\) | \(4\) | \(I_7^{*}\) | Additive | -1 | 4 | 15 | 3 |
\(3\) | \(2\) | \(I_{6}\) | Non-split multiplicative | 1 | 1 | 6 | 6 |
\(5\) | \(2\) | \(I_{2}\) | Non-split multiplicative | 1 | 1 | 2 | 2 |
\(43\) | \(1\) | \(IV^{*}\) | Additive | 1 | 2 | 8 | 0 |
Galois representations
The image of the 2-adic representation attached to this elliptic curve is the subgroup of $\GL(2,\Z_2)$ with Rouse label X4.
This subgroup is the pull-back of the subgroup of $\GL(2,\Z_2/2^3\Z_2)$ generated by $\left(\begin{array}{rr} 7 & 7 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 5 & 0 \\ 1 & 1 \end{array}\right)$ and has index 2.
The mod \( p \) Galois representation has maximal image \(\GL(2,\F_p)\) for all primes \( p \) except those listed.
prime | Image of Galois representation |
---|---|
\(3\) | B |
$p$-adic data
$p$-adic regulators
All \(p\)-adic regulators are identically \(1\) since the rank is \(0\).
No Iwasawa invariant data is available for this curve.
Isogenies
This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\)
3.
Its isogeny class 443760c
consists of 2 curves linked by isogenies of
degree 3.