Properties

Label 442090.b
Number of curves $2$
Conductor $442090$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("b1")
 
E.isogeny_class()
 

Elliptic curves in class 442090.b

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
442090.b1 442090b2 \([1, -1, 1, -4225147137, -105870737945631]\) \(-8341597385983597776317165707664481/14904201570185248149434970320\) \(-14904201570185248149434970320\) \([]\) \(813189888\) \(4.2986\)  
442090.b2 442090b1 \([1, -1, 1, 3169263, 61621374849]\) \(3520454064209678324329119/1642467221810708480000000\) \(-1642467221810708480000000\) \([7]\) \(116169984\) \(3.3256\) \(\Gamma_0(N)\)-optimal*
*optimality has not been determined rigorously for conductors over 400000. In this case the optimal curve is certainly one of the 0 curves highlighted, and conditionally curve 442090.b1.

Rank

sage: E.rank()
 

The elliptic curves in class 442090.b have rank \(1\).

Complex multiplication

The elliptic curves in class 442090.b do not have complex multiplication.

Modular form 442090.2.a.b

sage: E.q_eigenform(10)
 
\(q + q^{2} - 3 q^{3} + q^{4} + q^{5} - 3 q^{6} + q^{7} + q^{8} + 6 q^{9} + q^{10} + q^{11} - 3 q^{12} + q^{14} - 3 q^{15} + q^{16} + 4 q^{17} + 6 q^{18} - q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 7 \\ 7 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.