Show commands:
SageMath
E = EllipticCurve("b1")
E.isogeny_class()
Elliptic curves in class 442090.b
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
442090.b1 | 442090b2 | \([1, -1, 1, -4225147137, -105870737945631]\) | \(-8341597385983597776317165707664481/14904201570185248149434970320\) | \(-14904201570185248149434970320\) | \([]\) | \(813189888\) | \(4.2986\) | |
442090.b2 | 442090b1 | \([1, -1, 1, 3169263, 61621374849]\) | \(3520454064209678324329119/1642467221810708480000000\) | \(-1642467221810708480000000\) | \([7]\) | \(116169984\) | \(3.3256\) | \(\Gamma_0(N)\)-optimal* |
Rank
sage: E.rank()
The elliptic curves in class 442090.b have rank \(1\).
Complex multiplication
The elliptic curves in class 442090.b do not have complex multiplication.Modular form 442090.2.a.b
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rr} 1 & 7 \\ 7 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.