# Properties

 Label 441a Number of curves 2 Conductor 441 CM -3 Rank 0 Graph # Related objects

Show commands for: SageMath
sage: E = EllipticCurve("441.e1")

sage: E.isogeny_class()

## Elliptic curves in class 441a

sage: E.isogeny_class().curves

LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
441.e1 441a1 [0, 0, 1, 0, -4202] [] 168 $$\Gamma_0(N)$$-optimal
441.e2 441a2 [0, 0, 1, 0, 113447] [] 504

## Rank

sage: E.rank()

The elliptic curves in class 441a have rank $$0$$.

## Modular form441.2.a.e

sage: E.q_eigenform(10)

$$q - 2q^{4} + 7q^{13} + 4q^{16} + 7q^{19} + O(q^{20})$$

## Isogeny matrix

sage: E.isogeny_class().matrix()

The $$i,j$$ entry is the smallest degree of a cyclic isogeny between the $$i$$-th and $$j$$-th curve in the isogeny class, in the Cremona numbering.

$$\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)$$

## Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)

The vertices are labelled with Cremona labels. 