Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2=x^3+x^2+8100x-281852\)
|
(homogenize, simplify) |
\(y^2z=x^3+x^2z+8100xz^2-281852z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3+656073x-207438354\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z/{2}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(31, 0)$ | $0$ | $2$ |
Integral points
\( \left(31, 0\right) \)
Invariants
Conductor: | $N$ | = | \( 44180 \) | = | $2^{2} \cdot 5 \cdot 47^{2}$ |
|
Discriminant: | $\Delta$ | = | $-68986978105600$ | = | $-1 \cdot 2^{8} \cdot 5^{2} \cdot 47^{6} $ |
|
j-invariant: | $j$ | = | \( \frac{21296}{25} \) | = | $2^{4} \cdot 5^{-2} \cdot 11^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $1.3416972956194819769450653150$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-1.0454746256088441894102314342$ |
|
||
$abc$ quality: | $Q$ | ≈ | $0.8396384887826309$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $3.612601751954314$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 0$ |
|
Mordell-Weil rank: | $r$ | = | $ 0$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | = | $1$ |
|
Real period: | $\Omega$ | ≈ | $0.33172108742293499842660870857$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 12 $ = $ 3\cdot2\cdot2 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
Special value: | $ L(E,1)$ | ≈ | $0.99516326226880499527982612570 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | $1$ (exact) |
|
BSD formula
$$\begin{aligned} 0.995163262 \approx L(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.331721 \cdot 1.000000 \cdot 12}{2^2} \\ & \approx 0.995163262\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
Modular degree: | 104328 |
|
$ \Gamma_0(N) $-optimal: | no | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 3 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $3$ | $IV^{*}$ | additive | -1 | 2 | 8 | 0 |
$5$ | $2$ | $I_{2}$ | split multiplicative | -1 | 1 | 2 | 2 |
$47$ | $2$ | $I_0^{*}$ | additive | -1 | 2 | 6 | 0 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2B | 4.6.0.5 |
$3$ | 3B | 3.4.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 5640 = 2^{3} \cdot 3 \cdot 5 \cdot 47 \), index $384$, genus $9$, and generators
$\left(\begin{array}{rr} 2821 & 3384 \\ 846 & 3385 \end{array}\right),\left(\begin{array}{rr} 3855 & 1222 \\ 3854 & 4043 \end{array}\right),\left(\begin{array}{rr} 4319 & 0 \\ 0 & 5639 \end{array}\right),\left(\begin{array}{rr} 5617 & 24 \\ 5616 & 25 \end{array}\right),\left(\begin{array}{rr} 4419 & 376 \\ 4606 & 2163 \end{array}\right),\left(\begin{array}{rr} 13 & 24 \\ 4932 & 4333 \end{array}\right),\left(\begin{array}{rr} 4419 & 4324 \\ 3431 & 1505 \end{array}\right),\left(\begin{array}{rr} 1 & 24 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 15 & 16 \\ 314 & 335 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 24 & 1 \end{array}\right)$.
The torsion field $K:=\Q(E[5640])$ is a degree-$439943823360$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/5640\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | additive | $2$ | \( 2209 = 47^{2} \) |
$5$ | split multiplicative | $6$ | \( 8836 = 2^{2} \cdot 47^{2} \) |
$47$ | additive | $1106$ | \( 20 = 2^{2} \cdot 5 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2, 3 and 6.
Its isogeny class 44180g
consists of 4 curves linked by isogenies of
degrees dividing 6.
Twists
The minimal quadratic twist of this elliptic curve is 20a1, its twist by $-47$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{-1}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
$2$ | \(\Q(\sqrt{-47}) \) | \(\Z/6\Z\) | not in database |
$4$ | 4.2.883600.1 | \(\Z/4\Z\) | not in database |
$4$ | \(\Q(i, \sqrt{47})\) | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
$6$ | 6.2.28032210000.2 | \(\Z/6\Z\) | not in database |
$8$ | 8.0.31979477401600.3 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | 8.0.12491983360000.23 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | 8.0.780748960000.2 | \(\Z/12\Z\) | not in database |
$12$ | deg 12 | \(\Z/3\Z \oplus \Z/6\Z\) | not in database |
$12$ | deg 12 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
$16$ | deg 16 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database |
$16$ | deg 16 | \(\Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database |
$18$ | 18.0.693718520230840541428900800000000.1 | \(\Z/18\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 47 |
---|---|---|---|---|
Reduction type | add | ord | split | add |
$\lambda$-invariant(s) | - | 6 | 1 | - |
$\mu$-invariant(s) | - | 0 | 0 | - |
All Iwasawa $\lambda$ and $\mu$-invariants for primes $p\ge 5$ of good reduction are zero.
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.