Properties

Label 44180g
Number of curves $4$
Conductor $44180$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("g1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 44180g have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(5\)\(1 - T\)
\(47\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 + 3 T^{2}\) 1.3.a
\(7\) \( 1 + 7 T^{2}\) 1.7.a
\(11\) \( 1 - 5 T + 11 T^{2}\) 1.11.af
\(13\) \( 1 - 2 T + 13 T^{2}\) 1.13.ac
\(17\) \( 1 - 4 T + 17 T^{2}\) 1.17.ae
\(19\) \( 1 - 7 T + 19 T^{2}\) 1.19.ah
\(23\) \( 1 + 2 T + 23 T^{2}\) 1.23.c
\(29\) \( 1 - T + 29 T^{2}\) 1.29.ab
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 44180g do not have complex multiplication.

Modular form 44180.2.a.g

Copy content sage:E.q_eigenform(10)
 
\(q - 2 q^{3} + q^{5} + 2 q^{7} + q^{9} - 2 q^{13} - 2 q^{15} - 6 q^{17} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 3 & 6 \\ 2 & 1 & 6 & 3 \\ 3 & 6 & 1 & 2 \\ 6 & 3 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 44180g

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
44180.c3 44180g1 \([0, 1, 0, -2945, -43280]\) \(16384/5\) \(862337226320\) \([2]\) \(52164\) \(0.99512\) \(\Gamma_0(N)\)-optimal
44180.c4 44180g2 \([0, 1, 0, 8100, -281852]\) \(21296/25\) \(-68986978105600\) \([2]\) \(104328\) \(1.3417\)  
44180.c1 44180g3 \([0, 1, 0, -91305, 10586428]\) \(488095744/125\) \(21558430658000\) \([2]\) \(156492\) \(1.5444\)  
44180.c2 44180g4 \([0, 1, 0, -80260, 13254900]\) \(-20720464/15625\) \(-43116861316000000\) \([2]\) \(312984\) \(1.8910\)