Properties

Label 4410q
Number of curves 2
Conductor 4410
CM no
Rank 0
Graph

Related objects

Downloads

Learn more about

Show commands for: SageMath
sage: E = EllipticCurve("4410.n1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 4410q

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
4410.n1 4410q1 [1, -1, 0, -6624, -77652] [2] 10752 \(\Gamma_0(N)\)-optimal
4410.n2 4410q2 [1, -1, 0, 24246, -614790] [2] 21504  

Rank

sage: E.rank()
 

The elliptic curves in class 4410q have rank \(0\).

Modular form 4410.2.a.n

sage: E.q_eigenform(10)
 
\( q - q^{2} + q^{4} + q^{5} - q^{8} - q^{10} - 2q^{11} - 2q^{13} + q^{16} - 4q^{17} + O(q^{20}) \)

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.