Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2+xy+y=x^3-x^2-254687x+26034999\)
|
(homogenize, simplify) |
|
\(y^2z+xyz+yz^2=x^3-x^2z-254687xz^2+26034999z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3-4074987x+1662164966\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(-43, 6096)$ | $0.90780346851948134219649687981$ | $\infty$ |
| $(107, -54)$ | $0$ | $2$ |
| $(443, -222)$ | $0$ | $2$ |
Integral points
\( \left(-243, 8696\right) \), \( \left(-243, -8454\right) \), \( \left(-43, 6096\right) \), \( \left(-43, -6054\right) \), \( \left(107, -54\right) \), \( \left(443, -222\right) \), \( \left(507, 4946\right) \), \( \left(507, -5454\right) \), \( \left(737, 15066\right) \), \( \left(737, -15804\right) \), \( \left(1577, 58746\right) \), \( \left(1577, -60324\right) \)
Invariants
| Conductor: | $N$ | = | \( 4410 \) | = | $2 \cdot 3^{2} \cdot 5 \cdot 7^{2}$ |
|
| Discriminant: | $\Delta$ | = | $765912902060250000$ | = | $2^{4} \cdot 3^{12} \cdot 5^{6} \cdot 7^{8} $ |
|
| j-invariant: | $j$ | = | \( \frac{21302308926361}{8930250000} \) | = | $2^{-4} \cdot 3^{-6} \cdot 5^{-6} \cdot 7^{-2} \cdot 19^{3} \cdot 1459^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $2.1286464905581326785208165160$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $0.60638527169642118027051752582$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $1.0136164980344768$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $5.834024068449731$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
| Mordell-Weil rank: | $r$ | = | $ 1$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $0.90780346851948134219649687981$ |
|
| Real period: | $\Omega$ | ≈ | $0.25676893366714815275551997785$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 384 $ = $ 2^{2}\cdot2^{2}\cdot( 2 \cdot 3 )\cdot2^{2} $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $4$ |
|
| Special value: | $ L'(E,1)$ | ≈ | $5.5942974861860573048886765610 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 5.594297486 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.256769 \cdot 0.907803 \cdot 384}{4^2} \\ & \approx 5.594297486\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
| Modular degree: | 73728 |
|
| $ \Gamma_0(N) $-optimal: | no | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $4$ | $I_{4}$ | split multiplicative | -1 | 1 | 4 | 4 |
| $3$ | $4$ | $I_{6}^{*}$ | additive | -1 | 2 | 12 | 6 |
| $5$ | $6$ | $I_{6}$ | split multiplicative | -1 | 1 | 6 | 6 |
| $7$ | $4$ | $I_{2}^{*}$ | additive | -1 | 2 | 8 | 2 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image | $\ell$-adic index |
|---|---|---|---|
| $2$ | 2Cs | 4.12.0.1 | $12$ |
| $3$ | 3B | 3.4.0.1 | $4$ |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 420 = 2^{2} \cdot 3 \cdot 5 \cdot 7 \), index $384$, genus $5$, and generators
$\left(\begin{array}{rr} 409 & 12 \\ 408 & 13 \end{array}\right),\left(\begin{array}{rr} 211 & 12 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 413 & 414 \\ 186 & 5 \end{array}\right),\left(\begin{array}{rr} 273 & 410 \\ 278 & 417 \end{array}\right),\left(\begin{array}{rr} 1 & 12 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 12 & 1 \end{array}\right),\left(\begin{array}{rr} 337 & 12 \\ 342 & 73 \end{array}\right),\left(\begin{array}{rr} 9 & 4 \\ 404 & 413 \end{array}\right)$.
The torsion field $K:=\Q(E[420])$ is a degree-$11612160$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/420\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | split multiplicative | $4$ | \( 441 = 3^{2} \cdot 7^{2} \) |
| $3$ | additive | $2$ | \( 98 = 2 \cdot 7^{2} \) |
| $5$ | split multiplicative | $6$ | \( 882 = 2 \cdot 3^{2} \cdot 7^{2} \) |
| $7$ | additive | $32$ | \( 90 = 2 \cdot 3^{2} \cdot 5 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2, 3 and 6.
Its isogeny class 4410bk
consists of 8 curves linked by isogenies of
degrees dividing 12.
Twists
The minimal quadratic twist of this elliptic curve is 210b2, its twist by $21$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z \oplus \Z/{2}\Z$ are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $2$ | \(\Q(\sqrt{21}) \) | \(\Z/2\Z \oplus \Z/12\Z\) | 2.2.21.1-2100.1-n5 |
| $4$ | \(\Q(i, \sqrt{105})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $4$ | \(\Q(\sqrt{-5}, \sqrt{-21})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $6$ | 6.0.2420208.1 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
| $8$ | 8.0.31116960000.8 | \(\Z/4\Z \oplus \Z/12\Z\) | not in database |
| $8$ | 8.4.8782450790400.27 | \(\Z/2\Z \oplus \Z/24\Z\) | not in database |
| $12$ | 12.0.52716660869376.1 | \(\Z/6\Z \oplus \Z/12\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
| $18$ | 18.6.33663242317883836505645491312500000000.1 | \(\Z/2\Z \oplus \Z/36\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Reduction type | split | add | split | add | ss | ord | ord | ord | ss | ord | ord | ord | ord | ord | ss |
| $\lambda$-invariant(s) | 3 | - | 2 | - | 1,1 | 1 | 1 | 1 | 1,1 | 1 | 1 | 1 | 1 | 1 | 1,1 |
| $\mu$-invariant(s) | 1 | - | 0 | - | 0,0 | 0 | 0 | 0 | 0,0 | 0 | 0 | 0 | 0 | 0 | 0,0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.