Learn more

Refine search


Results (1-50 of 197 matches)

Next   Download to        
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation
441090.a1 441090.a \( 2 \cdot 3^{2} \cdot 5 \cdot 13^{2} \cdot 29 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -4030155, 1702128325]$ \(y^2+xy=x^3-x^2-4030155x+1702128325\)
441090.a2 441090.a \( 2 \cdot 3^{2} \cdot 5 \cdot 13^{2} \cdot 29 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -1858635, -956246459]$ \(y^2+xy=x^3-x^2-1858635x-956246459\)
441090.b1 441090.b \( 2 \cdot 3^{2} \cdot 5 \cdot 13^{2} \cdot 29 \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, -5355, -6318675]$ \(y^2+xy=x^3-x^2-5355x-6318675\)
441090.c1 441090.c \( 2 \cdot 3^{2} \cdot 5 \cdot 13^{2} \cdot 29 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -797556915, 8669630711925]$ \(y^2+xy=x^3-x^2-797556915x+8669630711925\)
441090.c2 441090.c \( 2 \cdot 3^{2} \cdot 5 \cdot 13^{2} \cdot 29 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -49954995, 134857672821]$ \(y^2+xy=x^3-x^2-49954995x+134857672821\)
441090.c3 441090.c \( 2 \cdot 3^{2} \cdot 5 \cdot 13^{2} \cdot 29 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -10872900, 9264314736]$ \(y^2+xy=x^3-x^2-10872900x+9264314736\)
441090.c4 441090.c \( 2 \cdot 3^{2} \cdot 5 \cdot 13^{2} \cdot 29 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -4302180, -3323870640]$ \(y^2+xy=x^3-x^2-4302180x-3323870640\)
441090.d1 441090.d \( 2 \cdot 3^{2} \cdot 5 \cdot 13^{2} \cdot 29 \) $1$ $\Z/2\Z$ $3.227996943$ $[1, -1, 0, -2588520, 1592329896]$ \(y^2+xy=x^3-x^2-2588520x+1592329896\)
441090.d2 441090.d \( 2 \cdot 3^{2} \cdot 5 \cdot 13^{2} \cdot 29 \) $1$ $\Z/2\Z$ $1.613998471$ $[1, -1, 0, -53520, 57640896]$ \(y^2+xy=x^3-x^2-53520x+57640896\)
441090.e1 441090.e \( 2 \cdot 3^{2} \cdot 5 \cdot 13^{2} \cdot 29 \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, -56250, -5209164]$ \(y^2+xy=x^3-x^2-56250x-5209164\)
441090.f1 441090.f \( 2 \cdot 3^{2} \cdot 5 \cdot 13^{2} \cdot 29 \) $1$ $\mathsf{trivial}$ $3.272278439$ $[1, -1, 0, 146160, -138124544]$ \(y^2+xy=x^3-x^2+146160x-138124544\)
441090.g1 441090.g \( 2 \cdot 3^{2} \cdot 5 \cdot 13^{2} \cdot 29 \) $1$ $\Z/2\Z$ $5.691330422$ $[1, -1, 0, -1049580, -413614850]$ \(y^2+xy=x^3-x^2-1049580x-413614850\)
441090.g2 441090.g \( 2 \cdot 3^{2} \cdot 5 \cdot 13^{2} \cdot 29 \) $1$ $\Z/2\Z$ $2.845665211$ $[1, -1, 0, -65610, -6448064]$ \(y^2+xy=x^3-x^2-65610x-6448064\)
441090.h1 441090.h \( 2 \cdot 3^{2} \cdot 5 \cdot 13^{2} \cdot 29 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -495927405, 4250954760651]$ \(y^2+xy=x^3-x^2-495927405x+4250954760651\)
441090.h2 441090.h \( 2 \cdot 3^{2} \cdot 5 \cdot 13^{2} \cdot 29 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, -1, 0, -31459635, 64335175425]$ \(y^2+xy=x^3-x^2-31459635x+64335175425\)
441090.h3 441090.h \( 2 \cdot 3^{2} \cdot 5 \cdot 13^{2} \cdot 29 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -5876415, -4232970819]$ \(y^2+xy=x^3-x^2-5876415x-4232970819\)
441090.h4 441090.h \( 2 \cdot 3^{2} \cdot 5 \cdot 13^{2} \cdot 29 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, 23676615, 265769951175]$ \(y^2+xy=x^3-x^2+23676615x+265769951175\)
441090.i1 441090.i \( 2 \cdot 3^{2} \cdot 5 \cdot 13^{2} \cdot 29 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -1623249510, 24480158588666]$ \(y^2+xy=x^3-x^2-1623249510x+24480158588666\)
441090.i2 441090.i \( 2 \cdot 3^{2} \cdot 5 \cdot 13^{2} \cdot 29 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, -1, 0, -244843260, -939582430084]$ \(y^2+xy=x^3-x^2-244843260x-939582430084\)
441090.i3 441090.i \( 2 \cdot 3^{2} \cdot 5 \cdot 13^{2} \cdot 29 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -219260040, -1249338941200]$ \(y^2+xy=x^3-x^2-219260040x-1249338941200\)
441090.i4 441090.i \( 2 \cdot 3^{2} \cdot 5 \cdot 13^{2} \cdot 29 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, 724231470, -6535213736050]$ \(y^2+xy=x^3-x^2+724231470x-6535213736050\)
441090.j1 441090.j \( 2 \cdot 3^{2} \cdot 5 \cdot 13^{2} \cdot 29 \) $1$ $\Z/2\Z$ $2.926958219$ $[1, -1, 0, -78870, 8242196]$ \(y^2+xy=x^3-x^2-78870x+8242196\)
441090.j2 441090.j \( 2 \cdot 3^{2} \cdot 5 \cdot 13^{2} \cdot 29 \) $1$ $\Z/2\Z$ $1.463479109$ $[1, -1, 0, 2250, 470900]$ \(y^2+xy=x^3-x^2+2250x+470900\)
441090.k1 441090.k \( 2 \cdot 3^{2} \cdot 5 \cdot 13^{2} \cdot 29 \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, -396720, -112838400]$ \(y^2+xy=x^3-x^2-396720x-112838400\)
441090.k2 441090.k \( 2 \cdot 3^{2} \cdot 5 \cdot 13^{2} \cdot 29 \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, 2809665, 677856141]$ \(y^2+xy=x^3-x^2+2809665x+677856141\)
441090.l1 441090.l \( 2 \cdot 3^{2} \cdot 5 \cdot 13^{2} \cdot 29 \) $1$ $\mathsf{trivial}$ $0.657084439$ $[1, -1, 0, -119430, 25854700]$ \(y^2+xy=x^3-x^2-119430x+25854700\)
441090.m1 441090.m \( 2 \cdot 3^{2} \cdot 5 \cdot 13^{2} \cdot 29 \) $1$ $\Z/2\Z$ $9.785778725$ $[1, -1, 0, -758250, -253437404]$ \(y^2+xy=x^3-x^2-758250x-253437404\)
441090.m2 441090.m \( 2 \cdot 3^{2} \cdot 5 \cdot 13^{2} \cdot 29 \) $1$ $\Z/2\Z$ $4.892889362$ $[1, -1, 0, -484470, -439115000]$ \(y^2+xy=x^3-x^2-484470x-439115000\)
441090.n1 441090.n \( 2 \cdot 3^{2} \cdot 5 \cdot 13^{2} \cdot 29 \) $1$ $\Z/2\Z$ $4.017301897$ $[1, -1, 0, -106755, 13167701]$ \(y^2+xy=x^3-x^2-106755x+13167701\)
441090.n2 441090.n \( 2 \cdot 3^{2} \cdot 5 \cdot 13^{2} \cdot 29 \) $1$ $\Z/2\Z$ $2.008650948$ $[1, -1, 0, 14925, 41373125]$ \(y^2+xy=x^3-x^2+14925x+41373125\)
441090.o1 441090.o \( 2 \cdot 3^{2} \cdot 5 \cdot 13^{2} \cdot 29 \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, -35614500, -515536750000]$ \(y^2+xy=x^3-x^2-35614500x-515536750000\)
441090.p1 441090.p \( 2 \cdot 3^{2} \cdot 5 \cdot 13^{2} \cdot 29 \) $2$ $\mathsf{trivial}$ $2.382327004$ $[1, -1, 0, -5355, -3462575]$ \(y^2+xy=x^3-x^2-5355x-3462575\)
441090.q1 441090.q \( 2 \cdot 3^{2} \cdot 5 \cdot 13^{2} \cdot 29 \) $1$ $\Z/2\Z$ $35.73639674$ $[1, -1, 0, -6449714595, -187650520317675]$ \(y^2+xy=x^3-x^2-6449714595x-187650520317675\)
441090.q2 441090.q \( 2 \cdot 3^{2} \cdot 5 \cdot 13^{2} \cdot 29 \) $1$ $\Z/2\Z$ $107.2091902$ $[1, -1, 0, -6343830180, -194478633777024]$ \(y^2+xy=x^3-x^2-6343830180x-194478633777024\)
441090.q3 441090.q \( 2 \cdot 3^{2} \cdot 5 \cdot 13^{2} \cdot 29 \) $1$ $\Z/2\Z$ $53.60459512$ $[1, -1, 0, -6342948000, -194535426937500]$ \(y^2+xy=x^3-x^2-6342948000x-194535426937500\)
441090.q4 441090.q \( 2 \cdot 3^{2} \cdot 5 \cdot 13^{2} \cdot 29 \) $1$ $\Z/2\Z$ $17.86819837$ $[1, -1, 0, 5420899485, -800195573951019]$ \(y^2+xy=x^3-x^2+5420899485x-800195573951019\)
441090.r1 441090.r \( 2 \cdot 3^{2} \cdot 5 \cdot 13^{2} \cdot 29 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -6134985, 5850175891]$ \(y^2+xy=x^3-x^2-6134985x+5850175891\)
441090.r2 441090.r \( 2 \cdot 3^{2} \cdot 5 \cdot 13^{2} \cdot 29 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -400815, 82747705]$ \(y^2+xy=x^3-x^2-400815x+82747705\)
441090.s1 441090.s \( 2 \cdot 3^{2} \cdot 5 \cdot 13^{2} \cdot 29 \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, -5784, -194752]$ \(y^2+xy=x^3-x^2-5784x-194752\)
441090.t1 441090.t \( 2 \cdot 3^{2} \cdot 5 \cdot 13^{2} \cdot 29 \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, 726246, 503010]$ \(y^2+xy=x^3-x^2+726246x+503010\)
441090.u1 441090.u \( 2 \cdot 3^{2} \cdot 5 \cdot 13^{2} \cdot 29 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -31179264, 66286086920]$ \(y^2+xy=x^3-x^2-31179264x+66286086920\)
441090.u2 441090.u \( 2 \cdot 3^{2} \cdot 5 \cdot 13^{2} \cdot 29 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -333384, 2700389888]$ \(y^2+xy=x^3-x^2-333384x+2700389888\)
441090.v1 441090.v \( 2 \cdot 3^{2} \cdot 5 \cdot 13^{2} \cdot 29 \) $1$ $\mathsf{trivial}$ $0.664147612$ $[1, -1, 0, -817569, 284873733]$ \(y^2+xy=x^3-x^2-817569x+284873733\)
441090.w1 441090.w \( 2 \cdot 3^{2} \cdot 5 \cdot 13^{2} \cdot 29 \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, -3703764, -4379483952]$ \(y^2+xy=x^3-x^2-3703764x-4379483952\)
441090.x1 441090.x \( 2 \cdot 3^{2} \cdot 5 \cdot 13^{2} \cdot 29 \) $2$ $\mathsf{trivial}$ $0.523540780$ $[1, -1, 0, -4885074, 4157070880]$ \(y^2+xy=x^3-x^2-4885074x+4157070880\)
441090.y1 441090.y \( 2 \cdot 3^{2} \cdot 5 \cdot 13^{2} \cdot 29 \) $1$ $\mathsf{trivial}$ $3.348124769$ $[1, -1, 0, -17353374, -27819993070]$ \(y^2+xy=x^3-x^2-17353374x-27819993070\)
441090.y2 441090.y \( 2 \cdot 3^{2} \cdot 5 \cdot 13^{2} \cdot 29 \) $1$ $\mathsf{trivial}$ $1.116041589$ $[1, -1, 0, -150864, -61130952]$ \(y^2+xy=x^3-x^2-150864x-61130952\)
441090.z1 441090.z \( 2 \cdot 3^{2} \cdot 5 \cdot 13^{2} \cdot 29 \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, -11383269234, 471822426098388]$ \(y^2+xy=x^3-x^2-11383269234x+471822426098388\)
441090.z2 441090.z \( 2 \cdot 3^{2} \cdot 5 \cdot 13^{2} \cdot 29 \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, 37805627406, 2452272103510100]$ \(y^2+xy=x^3-x^2+37805627406x+2452272103510100\)
441090.ba1 441090.ba \( 2 \cdot 3^{2} \cdot 5 \cdot 13^{2} \cdot 29 \) $1$ $\mathsf{trivial}$ $1.492832342$ $[1, -1, 0, 29121, -1478515]$ \(y^2+xy=x^3-x^2+29121x-1478515\)
Next   Download to