Properties

Label 441090.bw4
Conductor $441090$
Discriminant $-4.098\times 10^{22}$
j-invariant \( \frac{4223169036960119}{11647532812500} \)
CM no
Rank $1$
Torsion structure \(\Z/{2}\Z\)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

\(y^2+xy=x^3-x^2+5121936x-8659529852\) Copy content Toggle raw display (homogenize, simplify)
\(y^2z+xyz=x^3-x^2z+5121936xz^2-8659529852z^3\) Copy content Toggle raw display (dehomogenize, simplify)
\(y^2=x^3+81950973x-554127959554\) Copy content Toggle raw display (homogenize, minimize)

comment: Define the curve
 
sage: E = EllipticCurve([1, -1, 0, 5121936, -8659529852])
 
gp: E = ellinit([1, -1, 0, 5121936, -8659529852])
 
magma: E := EllipticCurve([1, -1, 0, 5121936, -8659529852]);
 
oscar: E = EllipticCurve([1, -1, 0, 5121936, -8659529852])
 
sage: E.short_weierstrass_model()
 
magma: WeierstrassModel(E);
 
oscar: short_weierstrass_model(E)
 

Mordell-Weil group structure

\(\Z \oplus \Z/{2}\Z\)

magma: MordellWeilGroup(E);
 

Infinite order Mordell-Weil generator and height

$P$ =  \(\left(3312, 209594\right)\) Copy content Toggle raw display
$\hat{h}(P)$ ≈  $2.3740296425136742031652269552$

sage: E.gens()
 
magma: Generators(E);
 
gp: E.gen
 

Torsion generators

\( \left(\frac{5123}{4}, -\frac{5123}{8}\right) \) Copy content Toggle raw display

comment: Torsion subgroup
 
sage: E.torsion_subgroup().gens()
 
gp: elltors(E)
 
magma: TorsionSubgroup(E);
 
oscar: torsion_structure(E)
 

Integral points

\( \left(3312, 209594\right) \), \( \left(3312, -212906\right) \), \( \left(6224, 510986\right) \), \( \left(6224, -517210\right) \) Copy content Toggle raw display

comment: Integral points
 
sage: E.integral_points()
 
magma: IntegralPoints(E);
 

Invariants

Conductor: \( 441090 \)  =  $2 \cdot 3^{2} \cdot 5 \cdot 13^{2} \cdot 29$
comment: Conductor
 
sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
oscar: conductor(E)
 
Discriminant: $-40984683415027157812500 $  =  $-1 \cdot 2^{2} \cdot 3^{8} \cdot 5^{8} \cdot 13^{10} \cdot 29 $
comment: Discriminant
 
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
oscar: discriminant(E)
 
j-invariant: \( \frac{4223169036960119}{11647532812500} \)  =  $2^{-2} \cdot 3^{-2} \cdot 5^{-8} \cdot 13^{-4} \cdot 29^{-1} \cdot 161639^{3}$
comment: j-invariant
 
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
oscar: j_invariant(E)
 
Endomorphism ring: $\Z$
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$
Faltings height: $3.0225211849495534400515450539\dots$
gp: ellheight(E)
 
magma: FaltingsHeight(E);
 
oscar: faltings_height(E)
 
Stable Faltings height: $1.1907403618847302263271787147\dots$
magma: StableFaltingsHeight(E);
 
oscar: stable_faltings_height(E)
 
$abc$ quality: $0.9390084776053046\dots$
Szpiro ratio: $4.561566752688005\dots$

BSD invariants

Analytic rank: $1$
sage: E.analytic_rank()
 
gp: ellanalyticrank(E)
 
magma: AnalyticRank(E);
 
Regulator: $2.3740296425136742031652269552\dots$
comment: Regulator
 
sage: E.regulator()
 
G = E.gen \\ if available
 
matdet(ellheightmatrix(E,G))
 
magma: Regulator(E);
 
Real period: $0.058910178299575093192507602174\dots$
comment: Real Period
 
sage: E.period_lattice().omega()
 
gp: if(E.disc>0,2,1)*E.omega[1]
 
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: $ 256 $  = $ 2\cdot2^{2}\cdot2^{3}\cdot2^{2}\cdot1 $
comment: Tamagawa numbers
 
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
oscar: tamagawa_numbers(E)
 
Torsion order: $2$
comment: Torsion order
 
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
oscar: prod(torsion_structure(E)[1])
 
Analytic order of Ш: $1$ ( rounded)
comment: Order of Sha
 
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 
Special value: $ L'(E,1) $ ≈ $ 8.9506886098532522329779929916 $
comment: Special L-value
 
r = E.rank();
 
E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 

BSD formula

$\displaystyle 8.950688610 \approx L'(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 0.058910 \cdot 2.374030 \cdot 256}{2^2} \approx 8.950688610$

# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
 
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
 
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
 
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
 
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analyiic sha) */
 
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
 
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
 
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
 
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form 441090.2.a.bw

\( q - q^{2} + q^{4} + q^{5} + 4 q^{7} - q^{8} - q^{10} - 4 q^{11} - 4 q^{14} + q^{16} + 6 q^{17} + 4 q^{19} + O(q^{20}) \) Copy content Toggle raw display

comment: q-expansion of modular form
 
sage: E.q_eigenform(20)
 
\\ actual modular form, use for small N
 
[mf,F] = mffromell(E)
 
Ser(mfcoefs(mf,20),q)
 
\\ or just the series
 
Ser(ellan(E,20),q)*q
 
magma: ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 66060288
comment: Modular degree
 
sage: E.modular_degree()
 
gp: ellmoddegree(E)
 
magma: ModularDegree(E);
 
$ \Gamma_0(N) $-optimal: no
Manin constant: 1 (conditional*)
comment: Manin constant
 
magma: ManinConstant(E);
 
* The Manin constant is correct provided that curve 441090.bw3 is optimal.

Local data

This elliptic curve is not semistable. There are 5 primes of bad reduction:

prime Tamagawa number Kodaira symbol Reduction type Root number ord($N$) ord($\Delta$) ord$(j)_{-}$
$2$ $2$ $I_{2}$ Non-split multiplicative 1 1 2 2
$3$ $4$ $I_{2}^{*}$ Additive -1 2 8 2
$5$ $8$ $I_{8}$ Split multiplicative -1 1 8 8
$13$ $4$ $I_{4}^{*}$ Additive 1 2 10 4
$29$ $1$ $I_{1}$ Non-split multiplicative 1 1 1 1

comment: Local data
 
sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.

prime $\ell$ mod-$\ell$ image $\ell$-adic image
$2$ 2B 4.6.0.1

comment: mod p Galois image
 
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

gens = [[7, 6, 9042, 9043], [7655, 6024, 6492, 5999], [1, 0, 8, 1], [1, 8, 0, 1], [5659, 5658, 4914, 3403], [1, 4, 4, 17], [9041, 8, 9040, 9], [6031, 0, 0, 9047], [5656, 4155, 2643, 8704], [6976, 3, 213, 6034]]
 
GL(2,Integers(9048)).subgroup(gens)
 
Gens := [[7, 6, 9042, 9043], [7655, 6024, 6492, 5999], [1, 0, 8, 1], [1, 8, 0, 1], [5659, 5658, 4914, 3403], [1, 4, 4, 17], [9041, 8, 9040, 9], [6031, 0, 0, 9047], [5656, 4155, 2643, 8704], [6976, 3, 213, 6034]];
 
sub<GL(2,Integers(9048))|Gens>;
 

The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 9048 = 2^{3} \cdot 3 \cdot 13 \cdot 29 \), index $48$, genus $0$, and generators

$\left(\begin{array}{rr} 7 & 6 \\ 9042 & 9043 \end{array}\right),\left(\begin{array}{rr} 7655 & 6024 \\ 6492 & 5999 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 8 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 8 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 5659 & 5658 \\ 4914 & 3403 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 4 & 17 \end{array}\right),\left(\begin{array}{rr} 9041 & 8 \\ 9040 & 9 \end{array}\right),\left(\begin{array}{rr} 6031 & 0 \\ 0 & 9047 \end{array}\right),\left(\begin{array}{rr} 5656 & 4155 \\ 2643 & 8704 \end{array}\right),\left(\begin{array}{rr} 6976 & 3 \\ 213 & 6034 \end{array}\right)$.

Input positive integer $m$ to see the generators of the reduction of $H$ to $\mathrm{GL}_2(\Z/m\Z)$:

The torsion field $K:=\Q(E[9048])$ is a degree-$27457463255040$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/9048\Z)$.

Isogenies

gp: ellisomat(E)
 

This curve has non-trivial cyclic isogenies of degree $d$ for $d=$ 2 and 4.
Its isogeny class 441090.bw consists of 4 curves linked by isogenies of degrees dividing 4.

Twists

The minimal quadratic twist of this elliptic curve is 11310.c4, its twist by $-39$.

Iwasawa invariants

No Iwasawa invariant data is available for this curve.

$p$-adic regulators

$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.