Properties

Label 4410.y
Number of curves $4$
Conductor $4410$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more about

Show commands for: SageMath
sage: E = EllipticCurve("4410.y1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 4410.y

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
4410.y1 4410v3 [1, -1, 1, -46388, 3852307] [2] 13824  
4410.y2 4410v4 [1, -1, 1, -33158, 6085531] [2] 27648  
4410.y3 4410v1 [1, -1, 1, -2288, -36333] [2] 4608 \(\Gamma_0(N)\)-optimal
4410.y4 4410v2 [1, -1, 1, 3592, -196269] [2] 9216  

Rank

sage: E.rank()
 

The elliptic curves in class 4410.y have rank \(1\).

Modular form 4410.2.a.y

sage: E.q_eigenform(10)
 
\( q + q^{2} + q^{4} - q^{5} + q^{8} - q^{10} - 2q^{13} + q^{16} - 2q^{19} + O(q^{20}) \)

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 3 & 6 \\ 2 & 1 & 6 & 3 \\ 3 & 6 & 1 & 2 \\ 6 & 3 & 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.