Properties

Label 4410.s
Number of curves 2
Conductor 4410
CM no
Rank 0
Graph

Related objects

Downloads

Learn more about

Show commands for: SageMath
sage: E = EllipticCurve("4410.s1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 4410.s

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
4410.s1 4410s2 [1, -1, 0, -10719, -424467] [2] 7680  
4410.s2 4410s1 [1, -1, 0, -639, -7155] [2] 3840 \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 4410.s have rank \(0\).

Modular form 4410.2.a.s

sage: E.q_eigenform(10)
 
\( q - q^{2} + q^{4} + q^{5} - q^{8} - q^{10} + 4q^{11} - 2q^{13} + q^{16} + 8q^{17} + 6q^{19} + O(q^{20}) \)

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.