Properties

Label 4410.m
Number of curves 2
Conductor 4410
CM no
Rank 1
Graph

Related objects

Downloads

Learn more about

Show commands for: SageMath
sage: E = EllipticCurve("4410.m1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 4410.m

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
4410.m1 4410o2 [1, -1, 0, -4419, 114183] [3] 4320  
4410.m2 4410o1 [1, -1, 0, -9, 405] [] 1440 \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 4410.m have rank \(1\).

Modular form 4410.2.a.m

sage: E.q_eigenform(10)
 
\( q - q^{2} + q^{4} + q^{5} - q^{8} - q^{10} - 3q^{11} + 5q^{13} + q^{16} - 6q^{17} - q^{19} + O(q^{20}) \)

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.