Properties

 Label 4410.m Number of curves $2$ Conductor $4410$ CM no Rank $1$ Graph Related objects

Show commands: SageMath
sage: E = EllipticCurve("m1")

sage: E.isogeny_class()

Elliptic curves in class 4410.m

sage: E.isogeny_class().curves

LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
4410.m1 4410o2 $$[1, -1, 0, -4419, 114183]$$ $$-5452947409/250$$ $$-437582250$$ $$$$ $$4320$$ $$0.73370$$
4410.m2 4410o1 $$[1, -1, 0, -9, 405]$$ $$-49/40$$ $$-70013160$$ $$[]$$ $$1440$$ $$0.18439$$ $$\Gamma_0(N)$$-optimal

Rank

sage: E.rank()

The elliptic curves in class 4410.m have rank $$1$$.

Complex multiplication

The elliptic curves in class 4410.m do not have complex multiplication.

Modular form4410.2.a.m

sage: E.q_eigenform(10)

$$q - q^{2} + q^{4} + q^{5} - q^{8} - q^{10} - 3 q^{11} + 5 q^{13} + q^{16} - 6 q^{17} - q^{19} + O(q^{20})$$ Isogeny matrix

sage: E.isogeny_class().matrix()

The $$i,j$$ entry is the smallest degree of a cyclic isogeny between the $$i$$-th and $$j$$-th curve in the isogeny class, in the LMFDB numbering.

$$\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)$$

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)

The vertices are labelled with LMFDB labels. 