# Properties

 Label 4410.d Number of curves $2$ Conductor $4410$ CM no Rank $0$ Graph # Related objects

Show commands for: SageMath
sage: E = EllipticCurve("4410.d1")

sage: E.isogeny_class()

## Elliptic curves in class 4410.d

sage: E.isogeny_class().curves

LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
4410.d1 4410a2 [1, -1, 0, -87915, -10011275]  14336
4410.d2 4410a1 [1, -1, 0, -5595, -149339]  7168 $$\Gamma_0(N)$$-optimal

## Rank

sage: E.rank()

The elliptic curves in class 4410.d have rank $$0$$.

## Modular form4410.2.a.d

sage: E.q_eigenform(10)

$$q - q^{2} + q^{4} - q^{5} - q^{8} + q^{10} - 2q^{11} + 2q^{13} + q^{16} - 2q^{17} + 6q^{19} + O(q^{20})$$

## Isogeny matrix

sage: E.isogeny_class().matrix()

The $$i,j$$ entry is the smallest degree of a cyclic isogeny between the $$i$$-th and $$j$$-th curve in the isogeny class, in the LMFDB numbering.

$$\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)$$

## Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)

The vertices are labelled with LMFDB labels. 