Show commands for:
SageMath
sage: E = EllipticCurve("bc1")
sage: E.isogeny_class()
Elliptic curves in class 4410.bc
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | Torsion structure | Modular degree | Optimality |
---|---|---|---|---|---|
4410.bc1 | 4410be3 | [1, -1, 1, -164723, 25773437] | [2] | 24576 | |
4410.bc2 | 4410be2 | [1, -1, 1, -10373, 398297] | [2, 2] | 12288 | |
4410.bc3 | 4410be1 | [1, -1, 1, -1553, -14479] | [2] | 6144 | \(\Gamma_0(N)\)-optimal |
4410.bc4 | 4410be4 | [1, -1, 1, 2857, 1334981] | [2] | 24576 |
Rank
sage: E.rank()
The elliptic curves in class 4410.bc have rank \(0\).
Complex multiplication
The elliptic curves in class 4410.bc do not have complex multiplication.Modular form 4410.2.a.bc
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.