Properties

Label 440d
Number of curves $1$
Conductor $440$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("d1")
 
E.isogeny_class()
 

Elliptic curves in class 440d

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
440.d1 440d1 \([0, 0, 0, -67, -226]\) \(-16241202/1375\) \(-2816000\) \([]\) \(144\) \(-0.017441\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 440d1 has rank \(0\).

Complex multiplication

The elliptic curves in class 440d do not have complex multiplication.

Modular form 440.2.a.d

sage: E.q_eigenform(10)
 
\(q + 3 q^{3} + q^{5} + q^{7} + 6 q^{9} - q^{11} - 6 q^{13} + 3 q^{15} + 3 q^{17} - 5 q^{19} + O(q^{20})\) Copy content Toggle raw display