Properties

Label 440818o2
Conductor $440818$
Discriminant $-3.267\times 10^{28}$
j-invariant \( -\frac{5282409060555942439635337}{12733300881458665984} \)
CM no
Rank $1$
Torsion structure trivial

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

\(y^2+xy=x^3-4967137937x-135024131935319\) Copy content Toggle raw display (homogenize, simplify)
\(y^2z+xyz=x^3-4967137937xz^2-135024131935319z^3\) Copy content Toggle raw display (dehomogenize, simplify)
\(y^2=x^3-6437410766379x-6299666587341944154\) Copy content Toggle raw display (homogenize, minimize)

comment: Define the curve
 
sage: E = EllipticCurve([1, 0, 0, -4967137937, -135024131935319])
 
gp: E = ellinit([1, 0, 0, -4967137937, -135024131935319])
 
magma: E := EllipticCurve([1, 0, 0, -4967137937, -135024131935319]);
 
oscar: E = EllipticCurve([1, 0, 0, -4967137937, -135024131935319])
 
sage: E.short_weierstrass_model()
 
magma: WeierstrassModel(E);
 
oscar: short_weierstrass_model(E)
 

Mordell-Weil group structure

\(\Z\)

magma: MordellWeilGroup(E);
 

Infinite order Mordell-Weil generator and height

$P$ =  \(\left(591670, 451427619\right)\) Copy content Toggle raw display
$\hat{h}(P)$ ≈  $2.0680831199470976407897520607$

sage: E.gens()
 
magma: Generators(E);
 
gp: E.gen
 

Integral points

\( \left(591670, 451427619\right) \), \( \left(591670, -452019289\right) \) Copy content Toggle raw display

comment: Integral points
 
sage: E.integral_points()
 
magma: IntegralPoints(E);
 

Invariants

Conductor: \( 440818 \)  =  $2 \cdot 7 \cdot 23 \cdot 37^{2}$
comment: Conductor
 
sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
oscar: conductor(E)
 
Discriminant: $-32670166345301477757058771456 $  =  $-1 \cdot 2^{9} \cdot 7^{9} \cdot 23^{3} \cdot 37^{9} $
comment: Discriminant
 
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
oscar: discriminant(E)
 
j-invariant: \( -\frac{5282409060555942439635337}{12733300881458665984} \)  =  $-1 \cdot 2^{-9} \cdot 7^{-9} \cdot 23^{-3} \cdot 37^{-3} \cdot 61^{3} \cdot 199^{3} \cdot 14347^{3}$
comment: j-invariant
 
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
oscar: j_invariant(E)
 
Endomorphism ring: $\Z$
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$
Faltings height: $4.3504699426419989816746663197\dots$
gp: ellheight(E)
 
magma: FaltingsHeight(E);
 
oscar: faltings_height(E)
 
Stable Faltings height: $2.5450109863198867594906184842\dots$
magma: StableFaltingsHeight(E);
 
oscar: stable_faltings_height(E)
 
$abc$ quality: $0.9828352421179953\dots$
Szpiro ratio: $6.047533551496946\dots$

BSD invariants

Analytic rank: $1$
sage: E.analytic_rank()
 
gp: ellanalyticrank(E)
 
magma: AnalyticRank(E);
 
Regulator: $2.0680831199470976407897520607\dots$
comment: Regulator
 
sage: E.regulator()
 
G = E.gen \\ if available
 
matdet(ellheightmatrix(E,G))
 
magma: Regulator(E);
 
Real period: $0.0089904263420293812685323359649\dots$
comment: Real Period
 
sage: E.period_lattice().omega()
 
gp: if(E.disc>0,2,1)*E.omega[1]
 
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: $ 324 $  = $ 3^{2}\cdot3^{2}\cdot1\cdot2^{2} $
comment: Tamagawa numbers
 
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
oscar: tamagawa_numbers(E)
 
Torsion order: $1$
comment: Torsion order
 
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
oscar: prod(torsion_structure(E)[1])
 
Analytic order of Ш: $1$ ( rounded)
comment: Order of Sha
 
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 
Special value: $ L'(E,1) $ ≈ $ 6.0241154627414972388696975755 $
comment: Special L-value
 
r = E.rank();
 
E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 

BSD formula

$\displaystyle 6.024115463 \approx L'(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 0.008990 \cdot 2.068083 \cdot 324}{1^2} \approx 6.024115463$

# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
 
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
 
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
 
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
 
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analyiic sha) */
 
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
 
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
 
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
 
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form 440818.2.a.o

\( q + q^{2} - 2 q^{3} + q^{4} - 3 q^{5} - 2 q^{6} + q^{7} + q^{8} + q^{9} - 3 q^{10} - 6 q^{11} - 2 q^{12} + 4 q^{13} + q^{14} + 6 q^{15} + q^{16} + 6 q^{17} + q^{18} - 2 q^{19} + O(q^{20}) \) Copy content Toggle raw display

comment: q-expansion of modular form
 
sage: E.q_eigenform(20)
 
\\ actual modular form, use for small N
 
[mf,F] = mffromell(E)
 
Ser(mfcoefs(mf,20),q)
 
\\ or just the series
 
Ser(ellan(E,20),q)*q
 
magma: ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 760586112
comment: Modular degree
 
sage: E.modular_degree()
 
gp: ellmoddegree(E)
 
magma: ModularDegree(E);
 
$ \Gamma_0(N) $-optimal: no
Manin constant: 1
comment: Manin constant
 
magma: ManinConstant(E);
 

Local data

This elliptic curve is not semistable. There are 4 primes of bad reduction:

prime Tamagawa number Kodaira symbol Reduction type Root number ord($N$) ord($\Delta$) ord$(j)_{-}$
$2$ $9$ $I_{9}$ Split multiplicative -1 1 9 9
$7$ $9$ $I_{9}$ Split multiplicative -1 1 9 9
$23$ $1$ $I_{3}$ Non-split multiplicative 1 1 3 3
$37$ $4$ $I_{3}^{*}$ Additive 1 2 9 3

comment: Local data
 
sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.

prime $\ell$ mod-$\ell$ image $\ell$-adic image
$3$ 3Cs 3.12.0.1

comment: mod p Galois image
 
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

gens = [[1, 18, 0, 1], [10, 9, 214443, 428896], [1, 9, 9, 82], [279730, 9, 391599, 428896], [367642, 9, 183807, 428896], [34772, 428895, 243441, 20], [428887, 18, 428886, 19], [1, 6, 6, 37], [214462, 9, 107217, 428896], [1, 0, 18, 1], [1, 12, 0, 1], [321689, 214470, 214290, 130789]]
 
GL(2,Integers(428904)).subgroup(gens)
 
Gens := [[1, 18, 0, 1], [10, 9, 214443, 428896], [1, 9, 9, 82], [279730, 9, 391599, 428896], [367642, 9, 183807, 428896], [34772, 428895, 243441, 20], [428887, 18, 428886, 19], [1, 6, 6, 37], [214462, 9, 107217, 428896], [1, 0, 18, 1], [1, 12, 0, 1], [321689, 214470, 214290, 130789]];
 
sub<GL(2,Integers(428904))|Gens>;
 

The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 428904 = 2^{3} \cdot 3^{2} \cdot 7 \cdot 23 \cdot 37 \), index $144$, genus $3$, and generators

$\left(\begin{array}{rr} 1 & 18 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 10 & 9 \\ 214443 & 428896 \end{array}\right),\left(\begin{array}{rr} 1 & 9 \\ 9 & 82 \end{array}\right),\left(\begin{array}{rr} 279730 & 9 \\ 391599 & 428896 \end{array}\right),\left(\begin{array}{rr} 367642 & 9 \\ 183807 & 428896 \end{array}\right),\left(\begin{array}{rr} 34772 & 428895 \\ 243441 & 20 \end{array}\right),\left(\begin{array}{rr} 428887 & 18 \\ 428886 & 19 \end{array}\right),\left(\begin{array}{rr} 1 & 6 \\ 6 & 37 \end{array}\right),\left(\begin{array}{rr} 214462 & 9 \\ 107217 & 428896 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 18 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 12 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 321689 & 214470 \\ 214290 & 130789 \end{array}\right)$.

Input positive integer $m$ to see the generators of the reduction of $H$ to $\mathrm{GL}_2(\Z/m\Z)$:

The torsion field $K:=\Q(E[428904])$ is a degree-$40702423547076673536$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/428904\Z)$.

Isogenies

gp: ellisomat(E)
 

This curve has non-trivial cyclic isogenies of degree $d$ for $d=$ 3.
Its isogeny class 440818o consists of 3 curves linked by isogenies of degrees dividing 9.

Twists

The minimal quadratic twist of this elliptic curve is 11914e2, its twist by $37$.

Iwasawa invariants

No Iwasawa invariant data is available for this curve.

$p$-adic regulators

$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.