Learn more

Refine search


Results (1-50 of 63 matches)

Next   Download to        
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation
4400.a1 4400.a \( 2^{4} \cdot 5^{2} \cdot 11 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, -100, -500]$ \(y^2=x^3-100x-500\)
4400.b1 4400.b \( 2^{4} \cdot 5^{2} \cdot 11 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, -5875, -668750]$ \(y^2=x^3-5875x-668750\)
4400.c1 4400.c \( 2^{4} \cdot 5^{2} \cdot 11 \) $2$ $\Z/2\Z$ $0.393283948$ $[0, 1, 0, -88, 228]$ \(y^2=x^3+x^2-88x+228\)
4400.c2 4400.c \( 2^{4} \cdot 5^{2} \cdot 11 \) $2$ $\Z/2\Z$ $1.573135795$ $[0, 1, 0, 12, 28]$ \(y^2=x^3+x^2+12x+28\)
4400.d1 4400.d \( 2^{4} \cdot 5^{2} \cdot 11 \) $1$ $\mathsf{trivial}$ $0.118600898$ $[0, 1, 0, -368, 3028]$ \(y^2=x^3+x^2-368x+3028\)
4400.d2 4400.d \( 2^{4} \cdot 5^{2} \cdot 11 \) $1$ $\mathsf{trivial}$ $0.355802696$ $[0, 1, 0, 32, -12]$ \(y^2=x^3+x^2+32x-12\)
4400.e1 4400.e \( 2^{4} \cdot 5^{2} \cdot 11 \) $1$ $\Z/2\Z$ $0.911760877$ $[0, 1, 0, -177508, 28726488]$ \(y^2=x^3+x^2-177508x+28726488\)
4400.e2 4400.e \( 2^{4} \cdot 5^{2} \cdot 11 \) $1$ $\Z/2\Z$ $0.455880438$ $[0, 1, 0, -11133, 442738]$ \(y^2=x^3+x^2-11133x+442738\)
4400.e3 4400.e \( 2^{4} \cdot 5^{2} \cdot 11 \) $1$ $\Z/2\Z$ $2.735282632$ $[0, 1, 0, -2508, 26488]$ \(y^2=x^3+x^2-2508x+26488\)
4400.e4 4400.e \( 2^{4} \cdot 5^{2} \cdot 11 \) $1$ $\Z/2\Z$ $1.367641316$ $[0, 1, 0, -1133, -14762]$ \(y^2=x^3+x^2-1133x-14762\)
4400.f1 4400.f \( 2^{4} \cdot 5^{2} \cdot 11 \) $1$ $\Z/2\Z$ $1.881646019$ $[0, 1, 0, -42208, -3350412]$ \(y^2=x^3+x^2-42208x-3350412\)
4400.f2 4400.f \( 2^{4} \cdot 5^{2} \cdot 11 \) $1$ $\Z/2\Z$ $3.763292039$ $[0, 1, 0, -2208, -70412]$ \(y^2=x^3+x^2-2208x-70412\)
4400.g1 4400.g \( 2^{4} \cdot 5^{2} \cdot 11 \) $1$ $\mathsf{trivial}$ $0.989443111$ $[0, 1, 0, -82208, 9049588]$ \(y^2=x^3+x^2-82208x+9049588\)
4400.h1 4400.h \( 2^{4} \cdot 5^{2} \cdot 11 \) $1$ $\Z/2\Z$ $0.456588101$ $[0, 1, 0, -228, 748]$ \(y^2=x^3+x^2-228x+748\)
4400.h2 4400.h \( 2^{4} \cdot 5^{2} \cdot 11 \) $1$ $\Z/2\Z$ $0.913176203$ $[0, 1, 0, -203, 1048]$ \(y^2=x^3+x^2-203x+1048\)
4400.i1 4400.i \( 2^{4} \cdot 5^{2} \cdot 11 \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 0, -3128133, 2130534637]$ \(y^2=x^3-x^2-3128133x+2130534637\)
4400.i2 4400.i \( 2^{4} \cdot 5^{2} \cdot 11 \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 0, -4133, 186637]$ \(y^2=x^3-x^2-4133x+186637\)
4400.i3 4400.i \( 2^{4} \cdot 5^{2} \cdot 11 \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 0, -133, -1363]$ \(y^2=x^3-x^2-133x-1363\)
4400.j1 4400.j \( 2^{4} \cdot 5^{2} \cdot 11 \) $1$ $\mathsf{trivial}$ $0.476050636$ $[0, -1, 0, 32, 32]$ \(y^2=x^3-x^2+32x+32\)
4400.k1 4400.k \( 2^{4} \cdot 5^{2} \cdot 11 \) $1$ $\mathsf{trivial}$ $19.87282247$ $[0, -1, 0, -12131208, -16259299088]$ \(y^2=x^3-x^2-12131208x-16259299088\)
4400.k2 4400.k \( 2^{4} \cdot 5^{2} \cdot 11 \) $1$ $\mathsf{trivial}$ $0.794912898$ $[0, -1, 0, -11208, 460912]$ \(y^2=x^3-x^2-11208x+460912\)
4400.k3 4400.k \( 2^{4} \cdot 5^{2} \cdot 11 \) $1$ $\mathsf{trivial}$ $3.974564494$ $[0, -1, 0, 78792, -4819088]$ \(y^2=x^3-x^2+78792x-4819088\)
4400.l1 4400.l \( 2^{4} \cdot 5^{2} \cdot 11 \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 0, -2376008, 1410470512]$ \(y^2=x^3-x^2-2376008x+1410470512\)
4400.l2 4400.l \( 2^{4} \cdot 5^{2} \cdot 11 \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 0, 3992, 390512]$ \(y^2=x^3-x^2+3992x+390512\)
4400.m1 4400.m \( 2^{4} \cdot 5^{2} \cdot 11 \) $1$ $\Z/2\Z$ $1.217312214$ $[0, 0, 0, -575, 4750]$ \(y^2=x^3-575x+4750\)
4400.m2 4400.m \( 2^{4} \cdot 5^{2} \cdot 11 \) $1$ $\Z/2\Z$ $2.434624429$ $[0, 0, 0, 50, 375]$ \(y^2=x^3+50x+375\)
4400.n1 4400.n \( 2^{4} \cdot 5^{2} \cdot 11 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -7375, -243750]$ \(y^2=x^3-7375x-243750\)
4400.n2 4400.n \( 2^{4} \cdot 5^{2} \cdot 11 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -500, -3125]$ \(y^2=x^3-500x-3125\)
4400.o1 4400.o \( 2^{4} \cdot 5^{2} \cdot 11 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -950, 10875]$ \(y^2=x^3-950x+10875\)
4400.o2 4400.o \( 2^{4} \cdot 5^{2} \cdot 11 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, 425, 39750]$ \(y^2=x^3+425x+39750\)
4400.p1 4400.p \( 2^{4} \cdot 5^{2} \cdot 11 \) $1$ $\Z/2\Z$ $4.600949236$ $[0, 0, 0, -23675, -1401750]$ \(y^2=x^3-23675x-1401750\)
4400.p2 4400.p \( 2^{4} \cdot 5^{2} \cdot 11 \) $1$ $\Z/4\Z$ $1.150237309$ $[0, 0, 0, -11675, 474250]$ \(y^2=x^3-11675x+474250\)
4400.p3 4400.p \( 2^{4} \cdot 5^{2} \cdot 11 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $2.300474618$ $[0, 0, 0, -1675, -15750]$ \(y^2=x^3-1675x-15750\)
4400.p4 4400.p \( 2^{4} \cdot 5^{2} \cdot 11 \) $1$ $\Z/2\Z$ $1.150237309$ $[0, 0, 0, 325, -1750]$ \(y^2=x^3+325x-1750\)
4400.q1 4400.q \( 2^{4} \cdot 5^{2} \cdot 11 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -295, -1950]$ \(y^2=x^3-295x-1950\)
4400.q2 4400.q \( 2^{4} \cdot 5^{2} \cdot 11 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -20, -25]$ \(y^2=x^3-20x-25\)
4400.r1 4400.r \( 2^{4} \cdot 5^{2} \cdot 11 \) $0$ $\Z/4\Z$ $1$ $[0, 0, 0, -188675, 1623250]$ \(y^2=x^3-188675x+1623250\)
4400.r2 4400.r \( 2^{4} \cdot 5^{2} \cdot 11 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[0, 0, 0, -126175, -17189250]$ \(y^2=x^3-126175x-17189250\)
4400.r3 4400.r \( 2^{4} \cdot 5^{2} \cdot 11 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -126050, -17225125]$ \(y^2=x^3-126050x-17225125\)
4400.r4 4400.r \( 2^{4} \cdot 5^{2} \cdot 11 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -65675, -33705750]$ \(y^2=x^3-65675x-33705750\)
4400.s1 4400.s \( 2^{4} \cdot 5^{2} \cdot 11 \) $1$ $\mathsf{trivial}$ $5.508896206$ $[0, 1, 0, -485248, -130268492]$ \(y^2=x^3+x^2-485248x-130268492\)
4400.s2 4400.s \( 2^{4} \cdot 5^{2} \cdot 11 \) $1$ $\mathsf{trivial}$ $0.220355848$ $[0, 1, 0, -448, 3508]$ \(y^2=x^3+x^2-448x+3508\)
4400.s3 4400.s \( 2^{4} \cdot 5^{2} \cdot 11 \) $1$ $\mathsf{trivial}$ $1.101779241$ $[0, 1, 0, 3152, -37292]$ \(y^2=x^3+x^2+3152x-37292\)
4400.t1 4400.t \( 2^{4} \cdot 5^{2} \cdot 11 \) $1$ $\mathsf{trivial}$ $1.067615184$ $[0, 1, 0, -408, -8812]$ \(y^2=x^3+x^2-408x-8812\)
4400.t2 4400.t \( 2^{4} \cdot 5^{2} \cdot 11 \) $1$ $\mathsf{trivial}$ $0.355871728$ $[0, 1, 0, 3592, 207188]$ \(y^2=x^3+x^2+3592x+207188\)
4400.u1 4400.u \( 2^{4} \cdot 5^{2} \cdot 11 \) $1$ $\mathsf{trivial}$ $0.708420572$ $[0, 1, 0, 792, 5588]$ \(y^2=x^3+x^2+792x+5588\)
4400.v1 4400.v \( 2^{4} \cdot 5^{2} \cdot 11 \) $1$ $\mathsf{trivial}$ $0.546704862$ $[0, 1, 0, -1933, 32263]$ \(y^2=x^3+x^2-1933x+32263\)
4400.v2 4400.v \( 2^{4} \cdot 5^{2} \cdot 11 \) $1$ $\mathsf{trivial}$ $1.640114586$ $[0, 1, 0, 67, 263]$ \(y^2=x^3+x^2+67x+263\)
4400.w1 4400.w \( 2^{4} \cdot 5^{2} \cdot 11 \) $0$ $\mathsf{trivial}$ $1$ $[0, 1, 0, -35408, -2600812]$ \(y^2=x^3+x^2-35408x-2600812\)
4400.w2 4400.w \( 2^{4} \cdot 5^{2} \cdot 11 \) $0$ $\mathsf{trivial}$ $1$ $[0, 1, 0, 118592, -13380812]$ \(y^2=x^3+x^2+118592x-13380812\)
Next   Download to