Show commands:
SageMath
E = EllipticCurve("d1")
E.isogeny_class()
Elliptic curves in class 440.d
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
440.d1 | 440d1 | \([0, 0, 0, -67, -226]\) | \(-16241202/1375\) | \(-2816000\) | \([]\) | \(144\) | \(-0.017441\) | \(\Gamma_0(N)\)-optimal |
Rank
sage: E.rank()
The elliptic curve 440.d1 has rank \(0\).
Complex multiplication
The elliptic curves in class 440.d do not have complex multiplication.Modular form 440.2.a.d
sage: E.q_eigenform(10)