Properties

Label 440.c
Number of curves $4$
Conductor $440$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("c1")
 
E.isogeny_class()
 

Elliptic curves in class 440.c

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
440.c1 440c3 \([0, 0, 0, -7547, -12986]\) \(46424454082884/26794860125\) \(27437936768000\) \([2]\) \(1152\) \(1.2681\)  
440.c2 440c2 \([0, 0, 0, -5047, 137514]\) \(55537159171536/228765625\) \(58564000000\) \([2, 2]\) \(576\) \(0.92153\)  
440.c3 440c1 \([0, 0, 0, -5042, 137801]\) \(885956203616256/15125\) \(242000\) \([4]\) \(288\) \(0.57496\) \(\Gamma_0(N)\)-optimal
440.c4 440c4 \([0, 0, 0, -2627, 269646]\) \(-1957960715364/29541015625\) \(-30250000000000\) \([4]\) \(1152\) \(1.2681\)  

Rank

sage: E.rank()
 

The elliptic curves in class 440.c have rank \(0\).

Complex multiplication

The elliptic curves in class 440.c do not have complex multiplication.

Modular form 440.2.a.c

sage: E.q_eigenform(10)
 
\(q + q^{5} + 4 q^{7} - 3 q^{9} - q^{11} + 6 q^{13} - 6 q^{17} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.