Show commands:
SageMath
E = EllipticCurve("b1")
E.isogeny_class()
Elliptic curves in class 440.b
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
440.b1 | 440b2 | \([0, 0, 0, -23, -38]\) | \(5256144/605\) | \(154880\) | \([2]\) | \(32\) | \(-0.27207\) | |
440.b2 | 440b1 | \([0, 0, 0, 2, -3]\) | \(55296/275\) | \(-4400\) | \([2]\) | \(16\) | \(-0.61864\) | \(\Gamma_0(N)\)-optimal |
Rank
sage: E.rank()
The elliptic curves in class 440.b have rank \(1\).
Complex multiplication
The elliptic curves in class 440.b do not have complex multiplication.Modular form 440.2.a.b
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.