Show commands:
SageMath
E = EllipticCurve("a1")
E.isogeny_class()
Elliptic curves in class 440.a
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
440.a1 | 440a1 | \([0, 0, 0, -38, -87]\) | \(379275264/15125\) | \(242000\) | \([2]\) | \(48\) | \(-0.20043\) | \(\Gamma_0(N)\)-optimal |
440.a2 | 440a2 | \([0, 0, 0, 17, -318]\) | \(2122416/171875\) | \(-44000000\) | \([2]\) | \(96\) | \(0.14615\) |
Rank
sage: E.rank()
The elliptic curves in class 440.a have rank \(1\).
Complex multiplication
The elliptic curves in class 440.a do not have complex multiplication.Modular form 440.2.a.a
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.