Properties

Label 439569p
Number of curves $1$
Conductor $439569$
CM no
Rank $0$

Related objects

Downloads

Learn more about

Show commands for: SageMath
sage: E = EllipticCurve("p1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 439569p

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
439569.p1 439569p1 [1, -1, 1, -155681, -23339130] [] 2115072 \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 439569p1 has rank \(0\).

Complex multiplication

The elliptic curves in class 439569p do not have complex multiplication.

Modular form 439569.2.a.p

sage: E.q_eigenform(10)
 
\( q - q^{2} - q^{4} - 2q^{5} + 2q^{7} + 3q^{8} + 2q^{10} + 3q^{11} - 2q^{14} - q^{16} - 2q^{19} + O(q^{20}) \)