# Properties

 Label 439569ci1 Conductor $439569$ Discriminant $-2.103\times 10^{24}$ j-invariant $$-\frac{692224}{867}$$ CM no Rank $0$ Torsion structure trivial

# Related objects

Show commands for: Magma / Pari/GP / SageMath

## Minimal Weierstrass equation

sage: E = EllipticCurve([0, 0, 1, -24762387, 84367516041])

gp: E = ellinit([0, 0, 1, -24762387, 84367516041])

magma: E := EllipticCurve([0, 0, 1, -24762387, 84367516041]);

$$y^2+y=x^3-24762387x+84367516041$$

trivial

## Integral points

sage: E.integral_points()

magma: IntegralPoints(E);



## Invariants

 sage: E.conductor().factor()  gp: ellglobalred(E)[1]  magma: Conductor(E); Conductor: $$439569$$ = $$3^{2} \cdot 13^{2} \cdot 17^{2}$$ sage: E.discriminant().factor()  gp: E.disc  magma: Discriminant(E); Discriminant: $$-2103166604501370021720483$$ = $$-1 \cdot 3^{7} \cdot 13^{10} \cdot 17^{8}$$ sage: E.j_invariant().factor()  gp: E.j  magma: jInvariant(E); j-invariant: $$-\frac{692224}{867}$$ = $$-1 \cdot 2^{12} \cdot 3^{-1} \cdot 13^{2} \cdot 17^{-2}$$ Endomorphism ring: $$\Z$$ Geometric endomorphism ring: $$\Z$$ (no potential complex multiplication) Sato-Tate group: $\mathrm{SU}(2)$ Faltings height: $$3.3604938424904533381962484039\dots$$ Stable Faltings height: $$-0.74287677175632349433738105813\dots$$

## BSD invariants

 sage: E.rank()  magma: Rank(E); Analytic rank: $$0$$ sage: E.regulator()  magma: Regulator(E); Regulator: $$1$$ sage: E.period_lattice().omega()  gp: E.omega[1]  magma: RealPeriod(E); Real period: $$0.074607334096490827496369818035\dots$$ sage: E.tamagawa_numbers()  gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]  magma: TamagawaNumbers(E); Tamagawa product: $$4$$  = $$2\cdot1\cdot2$$ sage: E.torsion_order()  gp: elltors(E)[1]  magma: Order(TorsionSubgroup(E)); Torsion order: $$1$$ sage: E.sha().an_numerical()  magma: MordellWeilShaInformation(E); Analytic order of Ш: $$9$$ = $3^2$ (exact)

## Modular invariants

Modular form 439569.2.a.ci

sage: E.q_eigenform(20)

gp: xy = elltaniyama(E);

gp: x*deriv(xy[1])/(2*xy[2]+E.a1*xy[1]+E.a3)

magma: ModularForm(E);

$$q + 2q^{2} + 2q^{4} - 4q^{5} - 3q^{7} - 8q^{10} - 4q^{11} - 6q^{14} - 4q^{16} + 4q^{19} + O(q^{20})$$

 sage: E.modular_degree()  magma: ModularDegree(E); Modular degree: 156708864 $$\Gamma_0(N)$$-optimal: yes Manin constant: 1

#### Special L-value

sage: r = E.rank();

sage: E.lseries().dokchitser().derivative(1,r)/r.factorial()

gp: ar = ellanalyticrank(E);

gp: ar[2]/factorial(ar[1])

magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);

$$L(E,1)$$ ≈ $$2.6858640274736697898693134492688388004$$

## Local data

This elliptic curve is not semistable. There are 3 primes of bad reduction:

sage: E.local_data()

gp: ellglobalred(E)[5]

magma: [LocalInformation(E,p) : p in BadPrimes(E)];

prime Tamagawa number Kodaira symbol Reduction type Root number ord($$N$$) ord($$\Delta$$) ord$$(j)_{-}$$
$$3$$ $$2$$ $$I_1^{*}$$ Additive -1 2 7 1
$$13$$ $$1$$ $$II^{*}$$ Additive 1 2 10 0
$$17$$ $$2$$ $$I_2^{*}$$ Additive 1 2 8 2

## Galois representations

The 2-adic representation attached to this elliptic curve is surjective.

sage: rho = E.galois_representation();

sage: [rho.image_type(p) for p in rho.non_surjective()]

magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];

The mod $$p$$ Galois representation has maximal image $$\GL(2,\F_p)$$ for all primes $$p$$ .

## $p$-adic data

### $p$-adic regulators

sage: [E.padic_regulator(p) for p in primes(5,20) if E.conductor().valuation(p)<2]

All $$p$$-adic regulators are identically $$1$$ since the rank is $$0$$.

No Iwasawa invariant data is available for this curve.

## Isogenies

This curve has no rational isogenies. Its isogeny class 439569ci consists of this curve only.