Properties

Label 439569be4
Conductor $439569$
Discriminant $-7.094\times 10^{21}$
j-invariant \( -\frac{35937}{83521} \)
CM no
Rank $0$
Torsion structure \(\Z/{2}\Z\)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

\(y^2+xy+y=x^3-x^2-302204x+4052833048\) Copy content Toggle raw display (homogenize, simplify)
\(y^2z+xyz+yz^2=x^3-x^2z-302204xz^2+4052833048z^3\) Copy content Toggle raw display (dehomogenize, simplify)
\(y^2=x^3-4835259x+259376479830\) Copy content Toggle raw display (homogenize, minimize)

comment: Define the curve
 
sage: E = EllipticCurve([1, -1, 1, -302204, 4052833048])
 
gp: E = ellinit([1, -1, 1, -302204, 4052833048])
 
magma: E := EllipticCurve([1, -1, 1, -302204, 4052833048]);
 
oscar: E = EllipticCurve([1, -1, 1, -302204, 4052833048])
 
sage: E.short_weierstrass_model()
 
magma: WeierstrassModel(E);
 
oscar: short_weierstrass_model(E)
 

Mordell-Weil group structure

\(\Z/{2}\Z\)

magma: MordellWeilGroup(E);
 

Torsion generators

\( \left(-\frac{6629}{4}, \frac{6625}{8}\right) \) Copy content Toggle raw display

comment: Torsion subgroup
 
sage: E.torsion_subgroup().gens()
 
gp: elltors(E)
 
magma: TorsionSubgroup(E);
 
oscar: torsion_structure(E)
 

Integral points

None

comment: Integral points
 
sage: E.integral_points()
 
magma: IntegralPoints(E);
 

Invariants

Conductor: \( 439569 \)  =  $3^{2} \cdot 13^{2} \cdot 17^{2}$
comment: Conductor
 
sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
oscar: conductor(E)
 
Discriminant: $-7093765959418973848689 $  =  $-1 \cdot 3^{6} \cdot 13^{6} \cdot 17^{10} $
comment: Discriminant
 
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
oscar: discriminant(E)
 
j-invariant: \( -\frac{35937}{83521} \)  =  $-1 \cdot 3^{3} \cdot 11^{3} \cdot 17^{-4}$
comment: j-invariant
 
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
oscar: j_invariant(E)
 
Endomorphism ring: $\Z$
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$
Faltings height: $2.8717513741515877728917006439\dots$
gp: ellheight(E)
 
magma: FaltingsHeight(E);
 
oscar: faltings_height(E)
 
Stable Faltings height: $-0.37663612094134348095743300428\dots$
magma: StableFaltingsHeight(E);
 
oscar: stable_faltings_height(E)
 
$abc$ quality: $1.1807067659885138\dots$
Szpiro ratio: $4.445934507869084\dots$

BSD invariants

Analytic rank: $0$
sage: E.analytic_rank()
 
gp: ellanalyticrank(E)
 
magma: AnalyticRank(E);
 
Regulator: $1$
comment: Regulator
 
sage: E.regulator()
 
G = E.gen \\ if available
 
matdet(ellheightmatrix(E,G))
 
magma: Regulator(E);
 
Real period: $0.10663567119851695099381984046\dots$
comment: Real Period
 
sage: E.period_lattice().omega()
 
gp: if(E.disc>0,2,1)*E.omega[1]
 
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: $ 32 $  = $ 2\cdot2^{2}\cdot2^{2} $
comment: Tamagawa numbers
 
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
oscar: tamagawa_numbers(E)
 
Torsion order: $2$
comment: Torsion order
 
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
oscar: prod(torsion_structure(E)[1])
 
Analytic order of Ш: $4$ = $2^2$ ( exact)
comment: Order of Sha
 
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 
Special value: $ L(E,1) $ ≈ $ 3.4123414783525424318022348946 $
comment: Special L-value
 
r = E.rank();
 
E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 

BSD formula

$\displaystyle 3.412341478 \approx L(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{4 \cdot 0.106636 \cdot 1.000000 \cdot 32}{2^2} \approx 3.412341478$

# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
 
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
 
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
 
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
 
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analyiic sha) */
 
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
 
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
 
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
 
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form 439569.2.a.be

\( q - q^{2} - q^{4} + 2 q^{5} + 4 q^{7} + 3 q^{8} - 2 q^{10} - 4 q^{14} - q^{16} + 4 q^{19} + O(q^{20}) \) Copy content Toggle raw display

comment: q-expansion of modular form
 
sage: E.q_eigenform(20)
 
\\ actual modular form, use for small N
 
[mf,F] = mffromell(E)
 
Ser(mfcoefs(mf,20),q)
 
\\ or just the series
 
Ser(ellan(E,20),q)*q
 
magma: ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 21233664
comment: Modular degree
 
sage: E.modular_degree()
 
gp: ellmoddegree(E)
 
magma: ModularDegree(E);
 
$ \Gamma_0(N) $-optimal: no
Manin constant: 1 (conditional*)
comment: Manin constant
 
magma: ManinConstant(E);
 
* The Manin constant is correct provided that curve 439569be1 is optimal.

Local data

This elliptic curve is not semistable. There are 3 primes of bad reduction:

prime Tamagawa number Kodaira symbol Reduction type Root number ord($N$) ord($\Delta$) ord$(j)_{-}$
$3$ $2$ $I_0^{*}$ Additive -1 2 6 0
$13$ $4$ $I_0^{*}$ Additive 1 2 6 0
$17$ $4$ $I_{4}^{*}$ Additive 1 2 10 4

comment: Local data
 
sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.

prime $\ell$ mod-$\ell$ image $\ell$-adic image
$2$ 2B 16.48.0.76

comment: mod p Galois image
 
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

gens = [[15406, 12831, 21411, 18994], [1, 64, 0, 1], [14143, 0, 0, 42431], [30655, 24414, 32526, 12247], [1, 0, 64, 1], [9, 124, 18164, 5097], [39167, 0, 0, 42431], [29951, 39156, 0, 42431], [57, 16, 36080, 40649], [42369, 64, 42368, 65]]
 
GL(2,Integers(42432)).subgroup(gens)
 
Gens := [[15406, 12831, 21411, 18994], [1, 64, 0, 1], [14143, 0, 0, 42431], [30655, 24414, 32526, 12247], [1, 0, 64, 1], [9, 124, 18164, 5097], [39167, 0, 0, 42431], [29951, 39156, 0, 42431], [57, 16, 36080, 40649], [42369, 64, 42368, 65]];
 
sub<GL(2,Integers(42432))|Gens>;
 

The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 42432 = 2^{6} \cdot 3 \cdot 13 \cdot 17 \), index $1536$, genus $53$, and generators

$\left(\begin{array}{rr} 15406 & 12831 \\ 21411 & 18994 \end{array}\right),\left(\begin{array}{rr} 1 & 64 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 14143 & 0 \\ 0 & 42431 \end{array}\right),\left(\begin{array}{rr} 30655 & 24414 \\ 32526 & 12247 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 64 & 1 \end{array}\right),\left(\begin{array}{rr} 9 & 124 \\ 18164 & 5097 \end{array}\right),\left(\begin{array}{rr} 39167 & 0 \\ 0 & 42431 \end{array}\right),\left(\begin{array}{rr} 29951 & 39156 \\ 0 & 42431 \end{array}\right),\left(\begin{array}{rr} 57 & 16 \\ 36080 & 40649 \end{array}\right),\left(\begin{array}{rr} 42369 & 64 \\ 42368 & 65 \end{array}\right)$.

Input positive integer $m$ to see the generators of the reduction of $H$ to $\mathrm{GL}_2(\Z/m\Z)$:

The torsion field $K:=\Q(E[42432])$ is a degree-$403642100219904$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/42432\Z)$.

Isogenies

gp: ellisomat(E)
 

This curve has non-trivial cyclic isogenies of degree $d$ for $d=$ 2 and 4.
Its isogeny class 439569be consists of 4 curves linked by isogenies of degrees dividing 4.

Twists

The minimal quadratic twist of this elliptic curve is 17a1, its twist by $-663$.

Iwasawa invariants

No Iwasawa invariant data is available for this curve.

$p$-adic regulators

All $p$-adic regulators are identically $1$ since the rank is $0$.