Show commands for:
SageMath
sage: E = EllipticCurve("be1")
sage: E.isogeny_class()
Elliptic curves in class 439569be
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | Torsion structure | Modular degree | Optimality |
---|---|---|---|---|---|
439569.be3 | 439569be1 | [1, -1, 1, -302204, -27246410] | [2] | 5308416 | \(\Gamma_0(N)\)-optimal* |
439569.be2 | 439569be2 | [1, -1, 1, -2500049, 1503332848] | [2, 2] | 10616832 | \(\Gamma_0(N)\)-optimal* |
439569.be1 | 439569be3 | [1, -1, 1, -39863414, 96884531020] | [2] | 21233664 | \(\Gamma_0(N)\)-optimal* |
439569.be4 | 439569be4 | [1, -1, 1, -302204, 4052833048] | [2] | 21233664 |
Rank
sage: E.rank()
The elliptic curves in class 439569be have rank \(0\).
Complex multiplication
The elliptic curves in class 439569be do not have complex multiplication.Modular form 439569.2.a.be
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.