Show commands for:
SageMath
sage: E = EllipticCurve("bb1")
sage: E.isogeny_class()
Elliptic curves in class 439569bb
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | Torsion structure | Modular degree | Optimality |
---|---|---|---|---|---|
439569.bb2 | 439569bb1 | [1, -1, 1, -539, 139026] | [2] | 688128 | \(\Gamma_0(N)\)-optimal* |
439569.bb1 | 439569bb2 | [1, -1, 1, -43634, 3483198] | [2] | 1376256 | \(\Gamma_0(N)\)-optimal* |
Rank
sage: E.rank()
The elliptic curves in class 439569bb have rank \(1\).
Complex multiplication
The elliptic curves in class 439569bb do not have complex multiplication.Modular form 439569.2.a.bb
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.