Show commands for:
SageMath
sage: E = EllipticCurve("ba1")
sage: E.isogeny_class()
Elliptic curves in class 439569ba
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | Torsion structure | Modular degree | Optimality |
---|---|---|---|---|---|
439569.ba2 | 439569ba1 | [1, -1, 1, -32537264, -70276428894] | [2] | 35094528 | \(\Gamma_0(N)\)-optimal |
439569.ba1 | 439569ba2 | [1, -1, 1, -518261009, -4541072067372] | [2] | 70189056 |
Rank
sage: E.rank()
The elliptic curves in class 439569ba have rank \(0\).
Complex multiplication
The elliptic curves in class 439569ba do not have complex multiplication.Modular form 439569.2.a.ba
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.