Minimal Weierstrass equation
\(y^2+y=x^3-11271x-1836234\)
Mordell-Weil group structure
\(\Z^2\)
Infinite order Mordell-Weil generators and heights
\(P\) | = | \( \left(272, 3901\right) \) | \( \left(731, 19507\right) \) |
\(\hat{h}(P)\) | ≈ | $1.1283652502609456381742228035$ | $1.2400907802707039471631402506$ |
Integral points
\( \left(153, 144\right) \), \( \left(153, -145\right) \), \( \left(185, 1552\right) \), \( \left(185, -1553\right) \), \( \left(272, 3901\right) \), \( \left(272, -3902\right) \), \( \left(731, 19507\right) \), \( \left(731, -19508\right) \), \( \left(1598, 63724\right) \), \( \left(1598, -63725\right) \), \( \left(6887, 571468\right) \), \( \left(6887, -571469\right) \), \( \left(41310, 8396172\right) \), \( \left(41310, -8396173\right) \)
Invariants
sage: E.conductor().factor()
gp: ellglobalred(E)[1]
magma: Conductor(E);
|
|||
Conductor: | \( 439569 \) | = | \(3^{2} \cdot 13^{2} \cdot 17^{2}\) |
sage: E.discriminant().factor()
gp: E.disc
magma: Discriminant(E);
|
|||
Discriminant: | \(-1364961641011371 \) | = | \(-1 \cdot 3^{9} \cdot 13^{2} \cdot 17^{7} \) |
sage: E.j_invariant().factor()
gp: E.j
magma: jInvariant(E);
|
|||
j-invariant: | \( -\frac{53248}{459} \) | = | \(-1 \cdot 2^{12} \cdot 3^{-3} \cdot 13 \cdot 17^{-1}\) |
Endomorphism ring: | \(\Z\) | ||
Geometric endomorphism ring: | \(\Z\) | (no potential complex multiplication) | |
Sato-Tate group: | $\mathrm{SU}(2)$ |
BSD invariants
sage: E.rank()
magma: Rank(E);
|
|||
Analytic rank: | \(2\) | ||
sage: E.regulator()
magma: Regulator(E);
|
|||
Regulator: | \(1.3553760699091694624156646148\) | ||
sage: E.period_lattice().omega()
gp: E.omega[1]
magma: RealPeriod(E);
|
|||
Real period: | \(0.20328607256664537474980666529\) | ||
sage: E.tamagawa_numbers()
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
magma: TamagawaNumbers(E);
|
|||
Tamagawa product: | \( 16 \) = \( 2^{2}\cdot1\cdot2^{2} \) | ||
sage: E.torsion_order()
gp: elltors(E)[1]
magma: Order(TorsionSubgroup(E));
|
|||
Torsion order: | \(1\) | ||
sage: E.sha().an_numerical()
magma: MordellWeilShaInformation(E);
|
|||
Analytic order of Ш: | \(1\) (rounded) |
Modular invariants
Modular form 439569.2.a.b
For more coefficients, see the Downloads section to the right.
sage: E.modular_degree()
magma: ModularDegree(E);
|
|||
Modular degree: | 3483648 | ||
\( \Gamma_0(N) \)-optimal: | yes | ||
Manin constant: | 1 |
Special L-value
\( L^{(2)}(E,1)/2! \) ≈ \( 4.4084652496424006057189372491885186816 \)
Local data
This elliptic curve is not semistable. There are 3 primes of bad reduction:
prime | Tamagawa number | Kodaira symbol | Reduction type | Root number | ord(\(N\)) | ord(\(\Delta\)) | ord\((j)_{-}\) |
---|---|---|---|---|---|---|---|
\(3\) | \(4\) | \(I_3^{*}\) | Additive | -1 | 2 | 9 | 3 |
\(13\) | \(1\) | \(II\) | Additive | 1 | 2 | 2 | 0 |
\(17\) | \(4\) | \(I_1^{*}\) | Additive | 1 | 2 | 7 | 1 |
Galois representations
The 2-adic representation attached to this elliptic curve is surjective.
The mod \( p \) Galois representation has maximal image \(\GL(2,\F_p)\) for all primes \( p \) .
$p$-adic data
$p$-adic regulators
\(p\)-adic regulators are not yet computed for curves that are not \(\Gamma_0\)-optimal.
No Iwasawa invariant data is available for this curve.
Isogenies
This curve has no rational isogenies. Its isogeny class 439569b consists of this curve only.