Show commands for:
SageMath
sage: E = EllipticCurve("v1")
sage: E.isogeny_class()
Elliptic curves in class 439569.v
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | Torsion structure | Modular degree | Optimality |
---|---|---|---|---|---|
439569.v1 | 439569v2 | [1, -1, 1, -43086920, -83679766842] | [2] | 49545216 | |
439569.v2 | 439569v1 | [1, -1, 1, -14514935, 20185113030] | [2] | 24772608 | \(\Gamma_0(N)\)-optimal* |
Rank
sage: E.rank()
The elliptic curves in class 439569.v have rank \(0\).
Complex multiplication
The elliptic curves in class 439569.v do not have complex multiplication.Modular form 439569.2.a.v
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.